DOI QR코드

DOI QR Code

Crystallization Behavior of Ti-(50-x)Ni-xCu(at%) (x = 20-30) Alloy Ribbons

  • Kim, Min-Su (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Jeon, Young-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Im, Yeon-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Lee, Yong-Hee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Nam, Tae-Hyun (School of Materials Science and Engineering, Gyeongsang National University)
  • Received : 2010.12.10
  • Accepted : 2010.12.24
  • Published : 2011.02.28

Abstract

Amorphous Ti-(50-x)Ni-xCu (at%) (x = 20, 25, 27, 30) alloy ribbons were prepared by melt spinning. Subsequently, the crystallization behavior of the alloy ribbons was investigated by X-ray diffraction and differential scanning calorimetry. ${\Delta}T$ (the temperature gap between $T_g$ and $T_x$) increased from 33 K to 47 K and the wavenumber ($Q_p$) decreased from 29.44 $nm^{-1}$ to 29.29 $nm^{-1}$ with increasing Cu content from 20 at% to 30 at%. The activation energy for crystallization decreased from 188.5 kJ/mol to 170.6 kJ/mol with increasing Cu content from 20 at% to 25 at%; afterwards, the activation energy remained near constant. Crystallization occurred in two-stage: amorphous-B2-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content less than 25 at%, while it occurred in three-stage; amorphous-B2-TiCu-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content more than 27 at%.

Keywords

References

  1. T. H. Nam, T. Saburi, Y. Kawamura, and K. Shimizu, Mater. Trans. JIM 31, 262 (1990). https://doi.org/10.2320/matertrans1989.31.262
  2. H. X. Zheng, J. Mentz, M. Bram, H. P. Buchkremer, and D. Stover, J. Alloys Compd. 463, 250 (2008)[DOI: 10.1016/ j.jallcom.2007.09.081].
  3. T. H. Nam and S. H. Kang, Met. Mater. Int. 8, 145 (2002) [DOI: 10.1007/bf03027010].
  4. H. Rosner, A. V. Shelyakov, A. M. Glezer, K. Feit, and P. Schlobmacher, Mater. Sci. Eng., A 273-275, 733 (1999) [Doi: 10.1016/s0921-5093(99)00406-2].
  5. Z. L. Xie, J. Van Humbeeck, Y. Liu, and L. Delaey, Scripta Mater. 37, 363 (1997) [DOI: 10.1016/s1359-6462(97)00092-4].
  6. T. H. Nam, S. M. Park, T. Y. Kim, and Y. W. Kim, Smart Mater. Struct. 14, S239 (2005) [DOI: 10.1088/0964-1726/14/5/011].
  7. W. C. Crone, A. N. Yahya, and J. H. Perepezko, Mater. Sci. Forum 386-388, 597 (2002). https://doi.org/10.4028/www.scientific.net/MSF.386-388.597
  8. Y. H. Kim, G. B. Cho, S. G. Hur, S. S. Jeong, and T. H. Nam, Mater. Sci. Eng., A 438-440, 531 (2006) [DOI: 10.1016/ j.msea.2006.02.061].
  9. X. Wang and J. J. Vlassak, Scripta Mater. 54, 925 (2006) [DOI: 10.1016/j.scriptamat.2005.10.061].
  10. S. W. Kang, Y. H. Lee, Y. M. Lim, J. M. Nam, T. H. Nam, and Y. W. Kim, Scripta Mater. 59, 1186 (2008) [DOI: 10.1016/ j.scriptamat.2008.08.005].
  11. S. H. Chang, S. K. Wu, and H. Kimura, Mater. Sci. Eng., A 476, 316 (2008) [DOI: 10.1016/j.msea.2007.04.102].
  12. G. P. Cheng, Z. L. Xie, and Y. Liu, J. Alloys Compd. 415, 182 (2006) [DOI: 10.1016/j.jallcom.2005.08.014].
  13. J. Eckert, L. Schultz, and K. Urban, J. Non-Cryst. Solids 127, 90 (1991) [DOI: 10.1016/0022-3093(91)90404-t].
  14. J. M. Nam, Y. H. Lee, T. H. Nam, Y. W. Kim, and J. M. Lee, Funct. Mater. Lett. 1, 145 (2008) [DOI: 10.1142/S1793604708000265].
  15. H. Rosner, P. Schlobmacher, A. V. Shelyakov, and A. M. Glezer, Acta Mater. 49, 1541 (2001) [DOI: 10.1016/S1359-6454(01)00055-6].

Cited by

  1. Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0905-1
  2. Crystallization and phase transformation behavior of TiCu-based bulk metallic glass composite with B2 particles vol.707, 2017, https://doi.org/10.1016/j.jallcom.2016.12.110
  3. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  4. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
  5. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  6. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  7. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  8. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  9. Thermal Properties, Microstructure and Microhardness of Cu–Al–Co Shape Memory Alloy System vol.67, pp.4, 2014, https://doi.org/10.1007/s12666-013-0376-1
  10. Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0904-2
  11. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
  12. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15
  13. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  14. Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
  15. Effect of Sintering Temperature on the Structure and Piezoelectric Properties of Lead-Free 0.97K0.5Na0.5NbO3-0.03AlFeO3 Ceramics vol.602-603, pp.1662-9795, 2014, https://doi.org/10.4028/www.scientific.net/KEM.602-603.822