• Title/Summary/Keyword: TiN Layer

Search Result 539, Processing Time 0.028 seconds

Characteristic Evaluation of TiMoN Coating Layer Deposited by Current Control available AIP-PVD Method (전류제어가 가능한 AIP-PVD법으로 증착된 TiMoN 코팅층 특성평가)

  • Shin, Hyun-Jung;Kim, Dong-Bea;Kim, Seong-Chul;Kim, Nam-Su
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.224-229
    • /
    • 2019
  • PVD coating is a technology that can be applied to various industries, and is widely used for processing molds and machinery, improving performance of core parts, and extending the life. Therefore, there is a need for a research on a device and a process technology that can adjust the performance to suit each application. In this study, a PVD coating device with ion density control was used to deposit a coating layer on SKD 11, a cold die steel, with magnetron currents of 1 A, 2 A, 3 A at arc currents of 80 A, 100 A, 130 A. It examined the mechanical properties for each condition. Increasing the arc current and magnetron current could improve the thickness, adhesion, and hardness of the coating layer. Especially, When the magnetron current was high, it suppressed the droplets that could be generated by the high arc current, showing excellent surface uniformity and adhesion of the coating layer.

Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment (플라즈마 표면 처리를 이용한 TiO2 MOS 커패시터의 특성 개선)

  • Shin, Donghyuk;Cho, Hyelim;Park, Seran;Oh, Hoonjung;Ko, Dae-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • Titanium dioxide ($TiO_2$) is a promising dielectric material in the semiconductor industry for its high dielectric constant. However, for utilization on Si substrate, $TiO_2$ film meets with a difficulty due to the large leakage currents caused by its small conduction band energy offset from Si substrate. In this study, we propose an in-situ plasma oxidation process in plasma-enhanced atomic layer deposition (PE-ALD) system to form an oxide barrier layer which can reduce the leakage currents from Si substrate to $TiO_2$ film. $TiO_2$ film depositions were followed by the plasma oxidation process using tetrakis(dimethylamino)titanium (TDMAT) as a Ti precursor. In our result, $SiO_2$ layer was successfully introduced by the plasma oxidation process and was used as a barrier layer between the Si substrate and $TiO_2$ film. Metal-oxide-semiconductor ($TiN/TiO_2/P-type$ Si substrate) capacitor with plasma oxidation barrier layer showed improved C-V and I-V characteristics compared to that without the plasma oxidation barrier layer.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

Characteristic and Electrical Properties of $TiN_xO_y/TiN_x$ Multilayer Thin Film Resistors with a High Resistance ($TiN_xO_y/TiN_x$다층 박막을 이용한 고저항 박막 저항체의 특성평가)

  • Park, Kyoung-Woo;Hur, Sung-Gi;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.19-19
    • /
    • 2009
  • TiNxOy/TiNx multilayer thin films with a high resistance (~ k$Omega$) were deposited on SiO2/Si substrates at room temperature by sputtering. The TiNx thin films show island and smooth surface morphology in samples prepared by dc and rf magnetron sputtering, respectively. TiNxOy/TiNx multilayer has been developed to control temperature coefficient of resistance (TCR) by the incorporation of TiNx layer (positive TCR) inserted into TiNxOy layers(negative TCR). Electrical and structural properties of sputtered TiNxOy/TiNx multilayer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multilayer films were annealed at various temperatures in oxygen ambient. Samples annealed at 700 oC for 1 min exhibit a good TCR value and a stable high resistivity.

  • PDF

Properties of TiN Multi layer Fabricated by Oblique Angle Deposition Technique (경사 코팅법으로 제조된 TiN 다층 박막의 특성)

  • Jeong, Jae-Hun;Yang, Ji-Hun;Park, Hye-Seon;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.125-125
    • /
    • 2011
  • 티타늄 화합물은 뛰어난 물리적 특성과 인체 무해성을 가지고 있어 생체, 내식 및 내마모 재료 등에 널리 응용되고 있으며, 금(gold)색의 색상 구현을 통해 미적 기능성 향상을 위한 표면처리 분야에도 많은 관심을 받고 있다. 본 연구에서는 아크 방전법을 이용해 밀착력이 우수한 다층 TiN 박막을 제조하고 미세조직 변화에 따른 특성을 알아보고자 한다.

  • PDF

Properties of Multi Layer TiN Films Fabricated by Oblique Angle Deposition (빗각 증착으로 제조된 다층 TiN 박막의 특성)

  • Jeong, Jae-Hun;Yang, Ji-Hun;Park, Hye-Seon;Song, Min-A;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.143-143
    • /
    • 2012
  • 질화 티타늄(Titanium Nitride)은 뛰어난 물리적 특성이 있어 내마모 재료의 표면처리 분야에 많이 사용되고 있다. 본 연구에서는 음극 아크 방전을 이용하여 빗각 증착을 실시하고 증착 시 기판에 bias 인가 여부에 따라 주상정의 방향성이 변하는 단층 및 다층의 TiN 박막을 제조하였으며 동일한 두께의 다양한 다층구조에서 경도의 증가를 확인하였다.

  • PDF

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Ti(CN) coating on aluminum alloy formed by MO-PACVD (Al 합금에 MO-PACVD법으로 증착시킨 Ti(CN) 코팅 층의 물성에 관한 연구)

  • ;;J. Woehle;K.-T. Rie
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-47
    • /
    • 2000
  • A Ti(CN) layer was formed on aluminum alloy by using diethylamino titanium, hydrogen and nitrogen with the pulsed DC PACVD process. Effect of process parameters such as precursor evaporation temperature, duty ratio, frequency, voltage, $H_2$/$N_2$gas ratio on the properties of Ti(CN) layer were investigated. The layer thus obtained had high hardness and low friction coefficient. Detailed results on the hardness, surface morphology, XRD, WDS analysis, wear test and scratch test of this layer are presented.

  • PDF

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.