• Title/Summary/Keyword: TiFe

Search Result 1,424, Processing Time 0.032 seconds

Hydrogen Formation by Photo-splitting of Water on Ilmenite (일메나이트 상에서 물의 광분해에 의한 수소의 생성)

  • Choi, Im-Kyu;Ha, Baik-Hyun
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 1988
  • Thermally treated Korean ilmenite was characterized and used for water splitting to obtain hydrogen by photo-catalytic reaction. Experiments on specific surface area, X-ray diffraction and EDS showed that the formation of FeO, $Fe_2O_3$ and $TiO_2$ ilmenite crystal surface increased the specific surface area with maximum value, phase change of $TiO_2$ at $600^{\circ}C$ and hetrogeneity. The hydrogen evolved in caustic soda solution on these ilmenites indicated that there was a maximum yield point at about $600^{\circ}C$. This point was explained with the change of the surface area due to sintering of newly formed FeO, $Fe_2O_3$ and $TiO_2$, as well as crystal phase change of anatase to rutile at $600^{\circ}C$. Produced hydrogen increased also as the concentration of caustic soda, but become constant at the near 1N solution.

  • PDF

Effect of La3+ and Ti4+ Ions on the Magnetic Properties of Barium Hexaferrite Powders Synthesized Using Sol-Gel Method

  • Ertus, Emre Burak;Yildirim, Serdar;Celik, Erdal
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.496-502
    • /
    • 2016
  • Doped and undoped barium hexaferrite powders ($BaFe_{12}O_{19}$, $Ba_{0.7}Ti_{0.3}Fe_{12}O_{19}$ and $Ba_{0.7}La_{0.3}Fe_{12}O_{19}$) were produced by the sol-gel method. The effects of substituting elements were studied in terms of the magnetic properties of barium hexaferrite powders. The magnetic properties were remarkably changed by the substitution of $La^{3+}$ and $Ti^{4+}$ ions for the $Ba^{2+}$ ion and were accompanied by oxygen deficiency in the $BaFe_{12}O_{19}$. Coercivities ($H_C$) from 4200 to 5100 Oe, remanences ($M_R$) from 22 to 49 emu/g and saturation magnetizations ($M_S$) from 41 to 73 emu/g were obtained for different samples. The obtained results were discussed in detail.

Crystal Structure and Mossbauer Studies of 57Fe Doped TiO2 (57Fe가 치환된 TiO2의 결정학적 및 뫼스바우어 분광학적 연구)

  • Lee, Hi-Min;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.237-242
    • /
    • 2003
  • $Ti_{1-x}$$^{57}$ F $e_{x}$ $O_2$(0.0$\leq$x$\leq$0.07) compounds were fabricated using the sol-gel method, and the crystal structure and magnetic properties were investigated as a function of doped $^{57}$ Fe concentration. X-ray diffraction patterns showed a pure anatase single phase, without any segregation of Fe into particulate. With varying $^{57}$ Fe concentration, we could observe unusual magnetic phenomena in these materials. Doping $^{57}$ Fe into the Ti $O_2$ nonmagnetic semiconductor formed magnetic properties, but the gradual increase of $^{57}$ Fe concentration decreased rapidly the ferromagnetic properties rather than enhanced the ferromagnetic properties. Obvious ferromagnetic behavior was shown for the samples with x$\leq$0.01, while paramagnetic behavior was shown for the sample with x$\geq$0.03. These phenomena could be verified using Mossbauer measurement. Separation of the ferromagnetic phase (sextet) and the paramagnetic phase (doublet) of the samples with different $^{57}$ Fe concentration was characterized. Samples with x$\leq$0.01 have sextet and doublet simultaneously, but samples with x$\geq$0.03 have only doublet at room temperature. This indicates that the sample x$\leq$0.01 have the ferromagnetic phase at room temperature. This result corresponded with the M-H loops referenced above and reveals an interesting feature that there is a critical limit of $^{57}$ Fe concentration (0.01$\leq$0.01 samples was fundamentally attributable to the paramagnetic phase as well as the ferromagnetic phase.e.

Proeutectoid ${\alpha}$ Reaction at Sub-eutectoid Temperatures in Binary Bypoeutectoid Ti-Co, Ti-Fe Alloys (2원계 아공석 Ti-Co, Ti-Fe 합금의 공석반응 온도 아래의 온도에서 초석 ${\alpha}$ 반응)

  • Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.78-86
    • /
    • 1994
  • A TEM study on proeutectoid ${\alpha}$ reaction at sub-eutectoid temperatures has been made in hypoeutectoid Ti-3.gw/o Co and Ti-5.2w/o Fe alloys. Widmanstatten ${\alpha}$ plates were formed in both alloys within the ${\beta}$ matrix with some modification of degenerate forms. These degenerate plates were formed by the sympathetic nucleation of ${\alpha}$ plates at ${\alpha}:{\beta}$ interphase boundaries. Three types of sympathetic nucleation, i.e., edge-to-edge, face-to-edge, face-to-face, were found in both alloys. The edge-to-edge sympathetically nucleated crystals formed a low-angle boundary between two crystals. The ${\alpha}:{\beta}$ interphase boundaries were found to be partially coherent interfaces which consist of regularly spaced misfit dislocations. The growth of these interphase boundaries were accomplished by the lateral movement of growth ledges. The intersection points of two ${\alpha}$ plates or the low angle boundaries which had formed by edge-to-edge sympathetic nucleation played a role as the potential sources of growth ledges during the growth of plate. The interfacial structures and the spatial morphologies of the degenerate proeutectoid ${\alpha}$ plates would be expected to influence the nucleation and growth of the succeeding eutectoid decomposition process.

  • PDF

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Magnetic Properties and the Crystallization of Amorphous Nd-Fe-Ti-B (Nd-Fe-Ti-B 비정질 합금의 자기적 성질 연구)

  • 이승화;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.140-145
    • /
    • 1997
  • The amorphous state of $NdFe_{10.7}TiB_{0.3}$ and its nanocrystallization have been studied by X-ray diffraction, 모스바우어 spectroscopy, and a vibrating sample magnetometer (VSM), $NdFe_{10.7}TiB_{0.3}$ amorphous ribbons were fabricated by a sigle-roll melt-spinning method. The average hyperfine field $H_{hf}$(T) of the amorphous state shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.46(T/T_c)^{3/2}-0.34(T/T_c)^{5/2}$ for $T/T_c<0.7$ indicative of spin wave excitation. The quadrupole splitting just above the Curie temperature $T_c$ is 0.46 mm/s, whereas the average quadrupole shift below $T_c$ is zero. The Curie and crystallization temperatures are determined to be $T_c$=380K and $T_x=490K$, respectively, for a heating rate of 5 K/min. The occupied area of nanocrystalline phase at around 770K is about 65%. Above the Curie temperature, VSM data show magnetic moments increases again. The formation of $\alpha$-Fe is the main reason for the increasing moment as conformed with the 모스바우어 measurements.

  • PDF

Effect of Fe2+/Fe3+ Molar Ratio on the Synthesized Magnetic Black Pigment by Hydrothermal Method (수열합성법으로 제조한 흑색 자성안료의 Fe2+/Fe3+ 몰비에 따른 특성)

  • Jung, Myung-Ho;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.812-816
    • /
    • 2017
  • $Fe_3O_4$ was prepared on the $TiO_2-coated$ natural mica substrate. The natural mica has an average particle size of $22{\mu}m$. The substrate was coated on $TiO_2$ thin films using hydrothermal synthesis at pH 1.5-2.5 at $75^{\circ}C$. The Fe precursor solution was prepared by mixing $FeSO_4$ (for $Fe^{2+}$ ion) and $FeCl_3$ (for $Fe^{3+}$ ions) with different molar ratios such as 1/2, 1/1, 2/1, 3/0, and $Fe_3O_4$ only. X-ray diffraction analysis shows that the crystal structure depends on the $FeCl_3-to-FeSO_4$ molar ratio. $Fe_3O_4$ crystal phase could be obtained at higher $FeSO_4$ contents.

탄소와 철이 도입된 산화타이타늄의 합성과 활성 연구

  • Kim, Yeong-Yong;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.287-287
    • /
    • 2013
  • 탄소와 철의 비율을 조절한 산화타이타늄(C-Fe-TiO2) 를 수열 합성법(Hydrothermal method)으로 합성하였다. XRD 를 통하여 산화타이타늄임을 확인하였고TEM 과 SEM 을 통하여 크기와 형태를 관찰하였다. 합성된 C-Fe-TiO2를 사용하여 광촉매적 활성을 확인하였으며, 유기반응 중 하나인 Fridel-Craft 반응에 응용하였다.

  • PDF