Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.4.496

Effect of La3+ and Ti4+ Ions on the Magnetic Properties of Barium Hexaferrite Powders Synthesized Using Sol-Gel Method  

Ertus, Emre Burak (KTO Karatay University, Materials Science and Nanotechnology Engineering)
Yildirim, Serdar (Dokuz Eylul University, Electronic Materials Production and Application Centre)
Celik, Erdal (Dokuz Eylul University, Electronic Materials Production and Application Centre)
Publication Information
Abstract
Doped and undoped barium hexaferrite powders ($BaFe_{12}O_{19}$, $Ba_{0.7}Ti_{0.3}Fe_{12}O_{19}$ and $Ba_{0.7}La_{0.3}Fe_{12}O_{19}$) were produced by the sol-gel method. The effects of substituting elements were studied in terms of the magnetic properties of barium hexaferrite powders. The magnetic properties were remarkably changed by the substitution of $La^{3+}$ and $Ti^{4+}$ ions for the $Ba^{2+}$ ion and were accompanied by oxygen deficiency in the $BaFe_{12}O_{19}$. Coercivities ($H_C$) from 4200 to 5100 Oe, remanences ($M_R$) from 22 to 49 emu/g and saturation magnetizations ($M_S$) from 41 to 73 emu/g were obtained for different samples. The obtained results were discussed in detail.
Keywords
barium hexaferrite; sol-gel; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).   DOI
2 M. M. Rashad and I. A. İbrahim, J. Magn. Magn. Mater. 323, 2158 (2011).   DOI
3 M. Mozaffari, M. Taheri, and J. Amighian, J. Magn. Magn. Mater 321, 1285 (2009).   DOI
4 A. Mali and A. Ataie, Ceram. Inter. 30, 1979 (2004).   DOI
5 U. Topal and H. I. Bakan, J. Eur. Ceram. Soc. 30, 3167 (2010).   DOI
6 N. A. Spaldin, Magnetic Materials Fundamentals and Applications, Second Ed., Cambridge University Press, New York (2010) pp. 124-126.
7 M. Jazirehpour, M. H. Shams, and O. Khani, J. Alloys Compd. 545, 32 (2012).   DOI
8 V. V. Soman, V. M. Nanoti, and D. K. Kulkarni, Ceram. Inter. 39, 5713 (2013).   DOI
9 V. N. Dhage, M. L. Mane, A. P. Keche, C. T. Birajdar, and K. M. Jadhav, Phys. B 406, 789 (2011).   DOI
10 S. Ounnunkad, Solid State Commun. 138, 472 (2006).   DOI
11 P. Wartewig, M. K. Krause, P. Esquinazi, S. Rösler, and R. Sonntag, J. Magn. Magn. Mater. 192, 83 (1999).   DOI
12 W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, and L. Qiao, J. Alloys Compd. 546, 234 (2013).   DOI
13 C. J. Li, B. Wang, and J. N. Wang, J. Magn. Magn. Mater. 324, 1305 (2012).   DOI
14 R. S. Meena, S. Bhattachrya, and R. Chatterjee, J. Magn. Magn. Mater. 322, 1923 (2010).   DOI
15 M. Montazeri-Pour and A. Ataie, J. Mater. Sci. Technol. 25, 465 (2009).
16 G. Shen, Z. Xu, and Y. Li, J. Magn. Magn. Mater 301, 325 (2006).   DOI
17 P. Enghag, Encyclopedia of The Elements, Wiley-VCH Co., Stockholm (2004) pp. 355-493.
18 G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue, and Z. He, J. Magn. Magn. Mater. 301, 383 (2006).   DOI
19 P. Xu, X. Han, H. Zhao, Z. Liang, and J. Wang, Mater. Lett. 62, 1305 (2008).   DOI
20 D. Lisjak and M. Drofenik, J. Eur. Ceram. Soc. 27, 4515 (2007).   DOI
21 H. Sozeri, Z. Durmuş, A. Baykal, and E. Uysal, J. Mater. Sci. Eng. B 177, 949 (2012).   DOI
22 B. H. Toby, J. Appl. Cryst. 38, 1040 (2005).   DOI
23 A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J. Magn. Magn. Mater. 302, 429 (2006).   DOI