• Title/Summary/Keyword: TiCrN Coating

Search Result 68, Processing Time 0.021 seconds

Analysis and Design of half-mirror coating for sunglasses (썬글라스용 반미러(Half-Mirror) 코팅의 분석과 설계)

  • Park, Moon-Chan;Jung, Boo-Young;Hwangbo, Chang-Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • We collected the domestic and foreign half-mirror coating lens for sunglasses. Their reflectance is measured using Spectrophotometer in order to analysis their optical property and the result which is calculated using Macleod program was compared with measured reflectance. In addition, we designed the new half-mirror coating lens with gold color using TiN material and investigated the optical property of the new half-mirror coating lens. The results obtained from analysis of half-mirror coating lenses are as follow : Two-tone half-mirror coating with silver color is fabricated with [air|$SiO_2$(or $Al_2O_3$)|Cr|glass]. The role of $SiO_2$(or $Al_2O_3$) on Cr improve the hardness of the lens and the thickness of the $Al_2O_3$ with 10 nm is good to show the lens silver color. Incase of color half-mirror coating lens. Blue system is designed by [air|$SiO_2$(66.3)|$TiO_2$(129.0)|$SiO_2$(62.9)|$SiO_2$(26.0)|$TiO_2$(120.3)|$SiO_2$(9.1)|glass], gold system [air|$SiO_2$(60.6)|$TiO_2$(86.2)|$SiO_2$(13.5)|$TiO_2$(86.8)|$SiO_2$(214.38)|glass], green system[air|$SiO_2$(74.3)|$TiO_2$(75.8)|$SiO_2$(44.3)|$TiO_2$(11.6)|$SiO_2$(160.8)|$TiO_2$(12.9)|$SiO_2$(183.3)|$TiO_2$(143.8)|glass], silver system[air|$SiO_2$(21.2)|$TiO_2$(49.7)|$SiO_2$(149.3)|glass]. White half-mirror coating lens has [air|$SiO_2$(17 nm)|$TiO_2$(43 nm)(or $ZrO_2$)|$SiO_2$(87 nm)|polysiloxane($4.46{\mu}m$|glass or CR-19]. It has half-mirror coaling lens which has about 19% reflectance and about 80% transmittance in the range of visible light(400~700nm). we designed the new half-mirror coating lens with gold color, the (x, y) value of the CIE is almost similar to the CIE value of [air|$SiO_2$(170 nm)|TiN(15 nm)|glass].

  • PDF

A Study on the Coating Characteristics of SCM415 Steel (SCM415 강의 코팅특성에 관한 연구)

  • Jang, Jeong-Hwan;Xu, Zhezhu;Kim, Hae-Ji;Kim, Nam-Kyung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 2011
  • The purpose of this study is to show the friction and wear characteristics on the vapor deposited coating layers on the SCM415 steel. In this research, frictional wear characteristic of coating materials such as Ti-series, Cr-series & WC/C and TiAlN+WC/C multilayer coating was investigated under room temperature, normal air pressure and no lubricating condition. Therefore, this study carried out research on the friction coefficient, micro hardness(Hv), surface roughness and wear quantity on the vapor deposited coating layers on the SCM415 steel. As the wear experimental result, the excellence of TiAlN+WC/C multilayer coating has been proven by high micro-hardness, low friction coefficient and wear quantity.

Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent (티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF

Analysis microstructure and mechanical properties of AlCr-based cutting tool coatings (AlCr계 절삭공구 코팅의 미세조직 및 우수한 기계적 물성 분석)

  • Im, Gi-Seong;Kim, Yeong-Seok;Park, Hye-Jin;Mun, Sang-Cheol;Jeong, Se-Il;Kim, Gwang-Sik;Park, Yeong-Gun;Kim, Gi-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.131-131
    • /
    • 2018
  • 최근 절삭공구산업은 자동차, 항공기, IT, 선박, 에너지 등 첨단산업의 증가로 인해 CGI, CFRP, 내열합금 등 난삭재의 수요가 증가하고 있다. 난삭재는 고내열, 고경도, 초경량 같은 특성을 지니며 우수한 기계적 물성을 갖지만 가공의 어려움이 있어 산업에 적용하는데 한계가 있다. 이러한 한계를 극복하기 위해 개발된 가공기술 중 하드 코팅은 공구코팅비용 대비 공구의 표면경도와 수명을 효율적으로 향상시킬 수 있다고 알려져 있다. 대표적인 하드코팅으로는 AlN계, TiN계 코팅이 있다. 이러한 코팅의 경우 높은 기계적 물성과 우수한 내마모성으로 인해 절삭공구의 성능을 향상시킬 수 있기 때문에, 많은 연구가 진행되고 있으며 절삭공구산업에서 각광받고 있다. 기존 선행연구 결과에 따르면 질화물 코팅의 우수한 물성은 질화물(Nitride) 생성 및 질화 공정에 의한 코팅층의 고밀도화에 의해 나타난다고 알려져 있다. 그 중에서 AlCrN coating은 우수한 내마모성 및 향상된 고온경도를 갖고 있다. AlCrN based coating에 미량의 원소를 첨가하여 기존 AlCrN coating의 기계적 특성을 더욱 향상 시킨 coating은 일반적인 고성능 코팅 대비 공구수명이 길다고 알려져 있으며, 전반적으로 우수한 특성에 의해 전 세계적으로 습식 및 건식 기계 가공 용도로 사용되고 있다. 본 연구에서는 AlCrN based coating에 미량의 원소를 첨가한 coating의 우수한 기계적 특성의 원인을 규명하기 위해 텅스텐카바이드(WC) 기판 위에 아크 이온 플레이팅 장비를 이용하여 AlCrN based coating을 증착 시킨 sample을 분석하였다. 결정구조 및 상 분석을 위해 X선 회절분석(XRD)을 실시하였으며, 미세 구조를 분석하기 위해 전계방출형 주사전자현미경(FE-SEM), 투과 전자현미경(TEM) 분석을 실시하였다. 또한 코팅층의 화학적 성분 분석을 위해 EDX분석을 실시하였으며 기계적 특성 평가를 위해 나노압입시험(Nano-indentation test)을 진행하였다.

  • PDF

NEW PROGRESS IN TiN-BASED PROTECTIVE COATINGS DEPOSITED BY ARC ION PLATING

  • Huang, R.F.;Wen, L.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.265-275
    • /
    • 1999
  • Titanium nitride and related overlayers produced by arc ion plating (AIP) are applied as commercial coatings in world-wide scale since the middle of 80s. Due to the achievements of low temperature deposition (LTD), they begin now to be used as wear and corrosion-resistant coatings for machine parts, besides applications on cemented carbide and high speed steel cutting tools. On the other side, TiN can be now applied successfully to brass, Al-alloy, ZnAl alloy articles as decorative coating through LTD. Various nitrides, carbonitrides, borides and other refractory compounds, such as (Ti, Al)N, TiCN, CrN, are used as the coatings for special heavy-duty working conditions instead of TiN since 90s. More and more multilayer coatings are applied now substituting single layer ones. Duplex processes are under development.

  • PDF

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Effects of ICP Power on the Properties of TiCrN Films (유도결합플라즈마의 전력이 TiCrN 코팅층에 미치는 영향)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.307-311
    • /
    • 2009
  • In this study, TiCrN films were deposited on STS 316 Land Si (100) wafer by inductively coupled plasma (ICP) assisted D.C. magnetron sputtering. The effect R.F. power for ICP discharge on the mechanical properties of TiCrN films was investigated. XRD, XPS and FE-SEM were used for the structure analysis. Also the Micro-Knoop hardness tester and profilometer were used for measuring hardness of coatings and film stress respectively. As increasing the R.F. power for ICP discharge, thickness of coating was decreased from 1633 nm to 1288 nm but hardness was increased about $Hk_{5g}$ 4200 at 400 W. All of the XRD patterns showed (111), (200) and (220) peaks of TiCrN films. Surface morphology was studied using the profilometer. FE-SEM was used to know morphology and cross-section of the films. Structure of the films was changed dense as increased ICP power.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

Evaluation of Wear Characteristics on Ti/Cr PVD Coatings of Cold Press Die for the Forming of UHSS (초고장력강판 성형용 냉간 프레스 금형의 Ti/Cr계 PVD코팅에 대한 마모 특성 평가)

  • Heo, J.Y.;Youn, K.T.;Song, J.S.;Kang, I.S.;Yoon, I.C.;Park, C.D.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.186-193
    • /
    • 2022
  • The application of UHSS sheet is being expanded up to 50% to reduce the weight of automobiles and improve safety. However, due to the high strength and low elongation of the ultra-high tensile strength steel sheet, product defects such as spring back and mold defects such as cracks and chippings also occur. In this study, Pin/Ring on Disc and Spiral wear tests were conducted to evaluate the durability of Ti/Cr-coated molds for forming 1.2GPa grade UHSS sheets. Component analysis and thickness were measured for each coating layer, and hardness and adhesion were investigated to determine mechanical properties. Combining the results of various wear tests, it was found that the TiAlN coating had the best wear and sticking resistance.