• Title/Summary/Keyword: TiCoSb

Search Result 42, Processing Time 0.036 seconds

Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성)

  • Kim, K.H.;Park, J.S.;Ahn, J.P.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2010
  • $CoSb_3$-based skutterudite compounds are promising candidates as thermoelectric (TE) materials used in intermediate temperature region. In this study, sintering of $CoSb_3$ powder and joining of $CoSb_3$ to copper-molybdenum electrode have been simultaneously performed by spark plasma sintering technique. The Ti foil was used for preventing the diffusion of copper into $CoSb_3$ and the Cu : Mo = 3 : 7 Vol. ratio composition was selected by the consideration of thermal expansion coefficients. The insertion of Ti interlayer between Cu-Mo and $CoSb_3$ was effective to join $CoSb_3$ to Cu-Mo by forming an intermediate layer of $TiSb_2$ at the Ti-$CoSb_3$ boundary. However, the formation of TiSb and TiCoSb intermediate layers deteriorated the joining properties by the generation of cracks in the interface of intermediate layer/$CoSb_3$ and intermediate/intermediate layers.

Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성)

  • Kim, Min Suk;Ahn, Jong Pil;Kim, Kyoung Hun;Kim, Kyung Ja;Park, Joo Seok;Seo, Won Seon;Kim, Hyung Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

Piezoelectric Characteristics of Low temperature Sintering Pb0.76Ca0.24[(Mn1/3Sb2/3)0.04Ti0.96]O3 Ceramics With the Variation of Poling Field (저온소결 Pb0.76Ca0.24[(Mn1/3Sb2/3)0.04Ti0.96]O3 세라믹스의 분극전계에 따른 압전특성)

  • Chung Kwang-Hyun;Yoo Kyung-Jin;Yoo Ju-Hyun;Cho Bong-Hee;Yoon Hyun-Sang;Paik Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.228-232
    • /
    • 2006
  • In this paper, in order to develop low temperature sintering $PbTiO_3$-system piezoelectric ceramics for thickness-vibration-mode piezoelectric transformer, $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ ceramics using $0.25\;wt\%\;CaCO_3$ and $0.2\;wt\%\;Li_{2}CO_3$ as sintering aids were manufactured according to the variation of poling field. The specimens could be sintered at $930\;^{\circ}C$. The piezoelectric properties were investigated according to the poling field. The maximum properties showed at the field of 6.5 kV/mm, which had kt of 0.49, Qmt of 1816, and $d_{33}$ of 81.4 pC/N.

Piezoelectric Characteristics of Low temperature sintering $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ Ceramics with the variation of Poling field (저온소결 $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ 세라믹스의 분극전계에 따른 압전특성)

  • Chung, Kwang-Hyun;Yoo, Kyung-Jin;Lee, Sang-Ho;Lee, Chang-Bae;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Duck-Chool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.176-177
    • /
    • 2005
  • In this paper, in order to develop low temperature sintering $PbTiO_3$-system piezoelectric ceramics for thickness-vibration-mode piezoelectric transformer, $Pb_{0.76}Ca_{0.24}[(Mn_{1/3}Sb_{2/3})_{0.04}Ti_{0.96}]O_3$ ceramics using $0.25wt%CaCO_3$ and 0.2wt%$Li_2CO_3$ as sintering aids were manufactured according to the variation of poling field. Specimens could be sintered at the sintering temperature of $930^{\circ}C$. The piezoelectric properties increased according to the increase of poling field and showed the maximum values (kt=0.49, Qmt=1816, and $d_{33}$=81.4pC/N) under 6.5kV/mm.

  • PDF

Dielectric and Piezoelectric Characteristics of $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ Ceramics with the amount of $Bi_2O_3$ addition ($Bi_2O_3$ 첨가량에 따른 $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.292-293
    • /
    • 2007
  • In the study, in order to develop low temperature sintering ceramics for multilayer piezoelectric transformer, $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ ceramics were fabricated using $Na_2CO_3$, $Li_2CO_3$, $MnO_2$ and $Bi_2O_3$ as sintering aids and their dielectric and piezoelectric properties were investigated according to the amount of $Bi_2O_3$ addition. At the sintering temperature of $900^{\circ}C$, density, thickness vibration mode electromechanical coupling factor ($k_t$), thickness vibration mode mechanical quality factor ($Q_{mt}$) and dielecteic constant (${\varepsilon}_r$) showed the optimum value of $6.94[g/cm^3]$, 0.497, 3,162 and 209, respectively, for multilayer piezoelectric transformer application.

  • PDF

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics (적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

Electrochemical properties of $TiO_2$/CNTs composite as anode materials for lithium secondary battery system (리튬이차전지용 음극물질 $TiO_2$/CNTs의 전기화학적 특성)

  • Oh, Mi-Hyun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1363-1364
    • /
    • 2007
  • The composites such as Sn-CNTs, $SnSb_{0.5}$-CNTs and $CoSb_3$-CNTs have attracted much attention in the past years owing to their good overall properties. In these samples, intermetallic compounds show high specific capacities. Recently, interest in metal oxides such as $Al_{2}O_{3}$, MgO and $TiO_2$ has been largely stimulated by the realization that they can improve the cycling stability of the Li-ion battery electrodes. The reversible capacity of the $TiO_2$/CNTs composite reaches 168 mAh $g^{-1}$ at the first cycle and remains almost constant during long-term cycling. In this study, a nanocomposite of $TiO_2$/CNTs was prepared by sol-gel method and its electrochemical properties as anode materials for Li-ion batteries were studied by galvanostatic cycling, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS).

  • PDF