• Title/Summary/Keyword: TiCl4

Search Result 448, Processing Time 0.026 seconds

A Study on the Chemically Vapor Deposited TiC, TiN, and TiC(C, N) on $Si_3N_4$-TiC Ceramic Tools. ($Si_3N_4-TiC$ Ceramic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구)

  • 김동원;김시범;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.36-43
    • /
    • 1988
  • Titanium carbide(TiC) and titanium nitride(TiN) flims were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$ and $TiCl_4-H_2-N_2$ gas mixtures, respectively. The nonmetal to metal ratio of deposit increases with increasing $m_{C/Ti}$(mole ratio of CH$_4$ to TiCl$_4$ in the input) for TiC coatings and $m_{N/Ti}$(mole ratio of N$_2$ to TiCl$_4$ in the input) for TiN coatings. The nearly stoiahiometric films could be obtained under the deposition condition of $m_{C/Ti}$ between 1.15 and 1.61 for TiC, and that of $m_{N/Ti}$ between 25 and 28 for TiN. Also maximum microhardness of the coatings can be obtained in these ranges. The interfacial region of TiC coatings on $Si_3N_4$-TiC ceramics is wider than that of TiN coatings according to Auger depth profile analysis, which indicates good interfacial bonding for TiC. Experimental results show that TiC coatings have an randomly equiaxed structure and Columnar structure with(220) preferred orientation can be obtained for TiN coatings. And, multilayer coatings have a dense and equiaxed structure.

Pilot Scale Experiments on the Oxidation of $TiCl_4$ ($TiCl_4$의 산화반응에 대한 파이롯트 규모 실험)

  • 박균영;이익형;양현수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.817-823
    • /
    • 1990
  • Pilot-scale experiments on the oxidation of TiCl4 to produce TiO2 were carried out in a verical reactor of 20cm in inside diameter and 140cm in length ; LPG burning was used as a heating means to maintain the reaciton temperature. The effects of reaction temperature and excess oxygen content on the conversion of TiCl4 and on the particle size of produced TiO2 were investigated. The ranges of operating conditions varied were 900 to TiO2 was 0.45-0.57${\mu}{\textrm}{m}$, TiCl4 conversion was 82-96%, the rutile content was 33-57% and the contents of impurities were 0.03% of Fe, 0.03% of SiO2 and 62ppm of Cl. These experimental results were compared with those of other investigators.

  • PDF

Studies on Preparation of $TiO_2$Powder with High Purity and Fine Particle -A Study of Fine Particle(III)- (고순도.미립 $TiO_2$분말 제조에 관한 연구 -미립화 연구(III)-)

  • 최병현;허혜경;지미정;정경원;김무경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.944-948
    • /
    • 2000
  • TiCl$_4$, 물 및 propanol의 혼합용액으로부터 가수분해하여 미립의 TiO$_2$분말을 제조할 때 HPC 첨가와 HPC 존재하에서 TiCl$_4$mole 농도 및 유기용매 처리를 했을 때 입자크기, 응집성 및 형태 등을 관찰하였다. HPC는 TiO$_2$합성시 steric dispersant로 작용하여 응집을 적게 하는 경향을 나타내었고 HPC를 첨가한 상태에서 TiCl$_4$의 mole 농도 변화는 입자크기에 크게 영향을 주었는데 TiCl$_4$mole 농도가 증가함에 따라 입자크기는 증가하였다. 또한 유기용제 처리는 분산 효과가 있었다.

  • PDF

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

The study on the formation of titanic acid by dehydration of TiCl₄ (TiCl₄가수분해에 의한 titanic acid의 생성에 관한 연구)

  • Kim, Heon;Kim, Dae Ung;Lee, Gyeong Hui;Baek, Un Pil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.342-342
    • /
    • 1998
  • The effect of pH on the dehydration reaction of TiCl₄solution. KOH and HCl were used as a accelerater and retarder in dehydration. Results are follow. Neutralization point is pH 7.4 in the system of $TiCl_4-KOH$ and the production which is produced at acidic side is Ti-gel of poly metatitanic acid. The production which is produced at alkalic side is aligomer and crystalline potasium titanate is not detected.

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Synthesis of Pure Brookite-type TiO2 Nanoparticles from Aqueous TiCl4 Solution with controlled Acidity by Precipitation Method (침전법으로 TiCl4 수용액의 산농도 조절을 통한 나노크기의 순수한 브루카이트상 이산화티타늄 분말 제조)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.545-551
    • /
    • 2007
  • HCl concentration, reaction temperature, and $Ti^{4+}$ concentration are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiCl_4$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these factors. Pure brookite-type $TiO_2$ nanoparticles were synthesized by heating the aqueous $TiCl_4$ solution with no more than 1.0 M of $Ti^{4+}$, in which the concentration of HCl was kept in the range of about 2.53~6.41 M during reaction, at the temperature below $70^{\circ}C$ for 20 h. Also, Pure brookite was finally transformed to a rutile phase via an anatase phase through heat-treatment.

Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool (Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.

A Study of (Ba, Sr)$TiO_3$ Synthesis by Direct Wet Process ((Ba, Sr)$TiO_3$ 습식 직접 합성법)

  • 이경희;이병하;김준수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • This study is aimed at synthsizing high dielectric material (Ba, Sr)$TiO_3$ through direct wet process. Pure and ultra fine particle of (Ba, Sr)$TiO_3$ Powder was synthesized from $BaCl_2$ $SrCl_2$ and TiCl4 aqeous solution at KOH Solution in the $N_2$ gas atmosphere. $BaCl_2$ $SrCl_2$ and TiCl4 were Mixed with the mole ratio of 1:9, 3:7:10, 5:5:10, 7:3:10, 9:1:10 and sythesized at 4$0^{\circ}C$~9$0^{\circ}C$ for 10min~15hrs. The particle size particle shape crystallinity and synthesis condition of (Ba, Sr)$TiO_3$ powder with the variation of temperature and reaction time in the aqueous solution studied by the exprimental instruments of DTA. TGA, X-ray diffratometer SEM.

  • PDF

The study on the formation of titanic acid by dehydration of TiCl4 (TiCl4 가수분해에 의한 titanic acid의 생성에 관한 연구)

  • Kim, Hern;Kim, Dae-Woong;Lee, Kyung-Hee;Baik, Woon-Phil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.343-349
    • /
    • 1998
  • The effect of pH on the dehydration reaction of $TiCL_4$ solution. KOH and HC1 were used as a accelerater and retarder in dehydration. Results are follow. Neutralization point is pH 7.4 in the system of $TiCL_4$- KOH and the production which is produced at acidic side is Ti -gel of poly metatitanic acid. The production which is produced at alkalic side is aligomer and crystalline potasium titanate is not detected.

  • PDF