• Title/Summary/Keyword: TiC-Mo

Search Result 214, Processing Time 0.035 seconds

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.

RF 스퍼터링법을 이용한 리튬이차전지용 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 양극박막의 제조 및 전기적 특성

  • Im, Hae-Na;Gong, U-Yeon;Yun, Seok-Jin;Choe, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.413-413
    • /
    • 2011
  • 최근 전기, 전자, 반도체 산업의 발전으로 전 고상 박막리튬전지는 초소형, 초경량의 마이크로 소자의 구현을 위한 고밀도 에너지원으로 각광받고 있다. 현재 양극박막은 대부분LCO(LiCoO2)계열이 이용되고 있으나, 코발트는 높은 가격과 인체 유해성 뿐만 아니라 상대적으로 낮은 용량(~140 mAh/g)등의 단점을 갖고 있어 향후 보다 고용량의 양극박막이 요구된다. 3원계 양극활물질 LiMO2(M=Co,Ni,Mn,etc.)은 우수한 충방전 효율 과 열적 안정성 뿐 아니라 277mAh/g의 높은 이론용량을 갖고 있어 고용량 양극박막으로의 적용시 고용량 박막이차전지 제작이 가능하다. 본 연구에서는 전 고상 박막 전지의 구현을 위하여 RF 스퍼터링법을 사용하여 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 박막을 증착하였다. Li/MnCoNi의 몰 비율을 변화시켜 높은 전기화학적 특성을 갖는 분말을 합성하여 제조한 타겟으로 Pt/TiO2/SiO2/Si 기판위에 RF 스퍼터법을 이용하여 박막을 성장시켰다. 박막 증착 시 가스의 비율은 Ar:O2=3:1로 하고 증착 압력의 조절(0.005~0.02 torr)을 통하여 박막의 두께와 표면 특성을 조절하며 성장시켰다. 또한 박막을 다양한 온도에서($400{\sim}550^{\circ}C$) 열처리하여 결정화도와 전기화학적 특성을 측정하였다. 증착 된 박막의 구조적 특성은 X-ray diffraction(XRD) 과 scanning electron microscopy(SEM)로 관찰되었다. 박막의 전기화학적 특성 평가를 위하여 Cyclic voltammatry를 측정하여 가역성의 정도를 확인하고 WBC3000 battery cycler를 이용한 half-cell 테스트를 통하여 박막의 용량을 평가하였다.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

Purification of wastewater from paper factory by cryo-cooled high-$T_c$ superconducting magnetic separator (전도냉각형 고온초전도 자석을 이용한 제지폐수의 자기분리에 의한 정수)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Sohn, Myung-Hwan;Kwon, Jun-Mo;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Ha, Hong-Soo;Kim, Ho-Sup;Kim, Young-Hun;Kang, Che-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.4-4
    • /
    • 2009
  • Paper factories use a large amount of water and same amount of wastewater is generated. It is important to recycle the wastewater because of water shortages and water pollution. The existing water treatment facilities like precipitation process need large-scale equipment and wide space to purify the wastewater of paper factory. High gradient magnetic separation (HGMS) system has the merits to purify rapidly because of large voids at filter and to occupy small space. In this paper, two types of superconducting magnets were used for HGMS systems. Cryo-cooled Bi-2223 superconducting magnet system with 70 mm room temperature bore and 200 mm of height was prepared. Cryo-cooled Nb-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. The effects of magnetic separation of wastewater were investigated as variation of magnetic field strength and flow rate of wastewater.

  • PDF

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

MICROLEAKAGE OF RESILON BY METHACRYLATE-BASED SEALER AND SELF-ADHESIVE RESIN CEMENT (Resilon을 이용한 근관충전 시 레진계열의 근관실러와 자가-접착 레진시멘트에 따른 미세누출)

  • Ham, Sun-Young;Kim, Jin-Woo;Shin, Hye-Jin;Cho, Kyung-Mo;Park, Se-Hee
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.204-212
    • /
    • 2008
  • The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by methacrylate-based root canal sealer or 2 different self-adhesive resin cements. Seventy single-rooted extracted human teeth were sectioned at the CEJ perpendicular to the long axis of the roots with diamond disk. Canal preparation was performed with crown-down technique using Profile NiTi rotary instruments and GG drill. Each canal was prepared to ISO size 40, .04 taper and 1 mm short from the apex. The prepared roots were randomly divided into 4 experimental groups of 15 roots each and 5 roots each for positive and negative control group. The root canals were filled by lateral condensation as follows. Group 1: Gutta-percha with AH-26, Group 2: Resilon with RealSeal primer & sealer, Group 3: Resilon with Rely-X Unicem, Group 4: Resilon with BisCem. After stored in $37^{\circ}C$, 100% humidity chamber for 7 days, the roots were coated with 2 layers of nail varnish except apical 3 mm. The roots were then immersed in 1% methylene blue dye for 7 days. Apical microleakage was measured by a maximum length of linear dye penetration after roots were separated longitudinally. One way ANOVA and Scheffe's post-hoc test were performed for statistical analysis. Group 1 showed the least apical leakage and there was no statistical significance between Group 2, 3, 4. According to the results, the self adhesive resin cement is possible to use as sealer instead of primer & sealant when root canal filled by Resilon.

  • PDF

MICROLEAKAGE OF RESILON BY METHACRYLATE-BASED SEALER AND SELF-ADHESIVE RESIN CEMENT (Resilon을 이용한 근관충전 시 레진계열의 근관실러와 자가-접착 레진시멘트에 따른 미세누출)

  • Ham, Sun-Young;Kim, Jin-Woo;Shin, Hye-Jin;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.204-212
    • /
    • 2008
  • The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by methacrylate-based root canal sealer or 2 different self-adhesive resin cements. Seventy single-rooted extracted human teeth were sectioned at the CEJ perpendicular to the long axis of the roots with diamond disk. Canal preparation was performed with crown-down technique using Profile NiTi rotary instruments and GG drill. Each canal was prepared to ISO size 40, .04 taper and 1 mm short from the apex. The prepared roots were randomly divided into 4 experimental groups of 15 roots each and 5 roots each for positive and negative control group. The root canals were filled by lateral condensation as follows. Group 1: Guttapercha with AH-26, Group 2: Resilon with RealSeal primer & sealer, Group 3: Resilon with Rely-X Unicem, Group 4: Resilon with BisCem. After stored in $37{\circ}C$, 100% humidity chamber for 7 days, the roots were coated with 2 layers of nail varnish except apical 3 mm. The roots were then immersed in 1% methylene blue dye for 7 days. Apical microleakage was measured by a maximum length of linear dye penetration after roots were separated longitudinally. One way ANOVA and Scheffe's post-hoc test were performed for statistical analysis. Group 1 showed the least apical leakage and there was no statistical significance between Group 2, 3, 4. According to the results, the self adhesive resin cement is possible to use as sealer instead of primer & sealant when root canal filled by Resilon.

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.