• Title/Summary/Keyword: TiAlN coating

Search Result 134, Processing Time 0.033 seconds

Comparative study on impact behavior of TiN and TiAlN coating layer on WC-Co substrate using Arc ion Plating Technique (아크이온 플레이팅법으로 WC-Co에 증착된 TiN 및 TiAlN박막의 충격특성 비교)

  • 윤순영;류정민;윤석영;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.408-414
    • /
    • 2002
  • TiN and TiAlN coating layer were deposited on WC-Co steel substrates by an arc ion plating(AIP) technique. The crystallinity and morphology for the deposited coating layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact behaviors of the deposited TiN and TiAlN coating layer were investigated with a ball-on-plate impact tester. Beyond $10^2$ impact cycle, TiAlN coating layer showed superior impact wear resistance compared to TiN coating layer. On the other hand, both TiN and TiAlN coating layers started to be partially failed between $10^2$ and $10^3$ impact cycle. Above $10^3$ impact cycle, TiN and TiAlN coating layers showed similar impact behavior because of the substrate effect.

Research on Microstructure and Properties of TiN, (Ti, Al)N and TiN/(Ti, Al)N Multilayer Coatings

  • Wang, She Quan;Chen, Li;Yin, Fei;Jia, Li
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.658-659
    • /
    • 2006
  • Magnetron sputtered TiN, (Ti, Al)N and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates have been characterized by using electron probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron spectroscopy (SEM), nanoindentation, scratcher and cutting tests. Results show that TiN coating is bell mouth columnar structures, (Ti, Al)N coating is straight columnar structures and the modulation structure has been formed in the TiN/(Ti, Al)N multilayer coating. TiN/(Ti, Al)N multilayer coating exhibited higher hardness, better adhesion with substrate and excellent cutting performance compared with TiN and (Ti, Al)N coating.

  • PDF

Property and formation behavior of TiAlSiWN nanocomposite coating layer by the AIP process (AIP 공정 적용 TiAlSiWN 나노 복합체 코팅층의 형성 거동 및 특성 평가)

  • Lee, Jeong-Han;Park, Hyeon-Guk;Jang, Jun-Ho;Hong, Seong-Gil;O, Ik-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.97.2-97.2
    • /
    • 2018
  • This study formed a hard TiAlSiWN coating layer using Ti, Al, Si and W raw powders that were mechanically alloyed and refined. The TiAlSi and TiAlSiW coating targets were fabricated using a single PCAS process in a short time with the optimal sintering conditions. The coating targets were deposited on the WC substrate by forming coating layers using TiAlSiN and TiAlSiWN nitride nano-composite structures with an AIP process. The properties of the nitride nano-composite coating layers were compared according to the addition of W. The microstructure of the nitride nano-composite coating layer was analyzed, focusing on the distribution of the crystalline phases, amorphous phases ($Si_3N_4$), and growth orientation of the columnar crystal depending on the addition of W. The mechanical properties of the coating layers were exhibited a hardness of approximately $3,000kg/mm^2$ and adhesion of about 117.77N in the TiAlSiN. In particular, the TiAlSiWN showed excellent properties with a hardness of more than $4,300kg/mm^2$ and an adhesion of about 181.47N.

  • PDF

A Study on the Friction and Wear Characteristic of TiAlN and CrAlN Coating on the SKD61 Extrusion Mold Steel for 6xxx Aluminum Alloy (6xxx계 알루미늄합금의 압출 금형용 SKD61 강재에 증착된 TiAlN, CrAlN 박막의 마찰.마모에 대한 연구)

  • Kim, Min-Suck;Kho, Jin-Hyun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • In this research, the friction and wear characteristic behaviors of coating materials of TiAlN and CrAlN were investigated. The wear test was conducted in air and un-lubricated state using the reciprocating friction wear tester. Temperature were 50 and $120^{\circ}C$, and load were 3, 7, and 11 kgf for tests. By comparing the coefficient of friction and observing the wear microstructure, the friction and wear characteristic behaviors of TiAlN and CrAlN coating layers on SKD61 were investigated. The coefficient of friction of CrAlN coating was lower than that of TiAlN at all conditions. Therefore, CrAlN was suggested to be more advantageous coating than TiAlN for the extrusion mold of aluminum.

A Comparative Study on Tribological Characteristics between Ni-P Electroless Plating and TiAlN Coating on Anodized Aluminum Alloy (아노다이징된 알루미늄 합금에 대한 TiAlN 코팅, 무전해 Ni-P 도금의 트라이볼로지 특성 비교)

  • Lee, Gyu-Sun;Bae, Sung-Hoon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • A ceramic coating is a surface treatment method that is being used widely in the industrial field, recently. Ni-P plating is also being used widely because of its corrosion resistance and low cost. An anodizing method is applicable to aluminum alloy. An anodizing method generates a thick oxide layer on the surface and then, that heightens hardness and protects the surface. These surface treatments are applied to various mechanical components and treated surfaces relatively move one another. In this study, tribological characteristics of Ni-P plating and TiAlN coating on anodized Al alloy are compared. The counterpart, anodized Al alloy, is worn out abrasively by Ni-P plating and TiAlN coating that have higher hardness. Abrasively worn debris accumulated on the surfaces of Ni-P plating and TiAlN coating, and then transferred layer is formed. This transferred layer affects the amplitude of variation of friction coefficient, which is related to noise and vibration. The amplitude of variation of friction coefficient of Ni-P plating is lower than those of TiAlN coating during the tests.

Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings (Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동)

  • Kim, Jung-Wook;Jeon, Jun-Ha;Cho, Gun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

A Study on the Friction and Wear Characteristics of TiAlN+WC/C Multilayer Coating of SCM415 Steel (TiAlN+WC/C 다층코팅 SCM415강의 마찰•마모 특성에 관한 연구)

  • Jang, Jeong-Hwan;Kim, Nam-Kyung;Kim, Hae-Ji;Zang, Qi;Xu, Zhezhu;Lyu, SungKi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • The purpose of this study is to show the friction and wear characteristics on the vapor deposited coating layers on the SCM415 steel. In this research, frictional wear characteristic of coating materials such as TiAlN+WC/C Multilayer Coating was investigated under room temperature, normal air pressure and nothing lubricating condition. Therefore this study carried out research on the friction coefficient, micro hardness(Hv), roughness, EPMA on the vapor deposited coating layers on the SCM415 steel. As the wear experimental result, the coefficient of friction decreased according to experimental load increases.

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System (하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가)

  • 김경중;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF