• 제목/요약/키워드: TiAlN

검색결과 632건 처리시간 0.026초

비-휘발성 저항 변화 메모리 응용을 위한 WOx 물질의 전기적 특성 연구 (A Study of the Electrical Characteristics of WOx Material for Non-Volatile Resistive Random Access Memory)

  • 정균호;김경민;송승곤;박윤선;박경완;석중현
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.268-273
    • /
    • 2016
  • In this study, we observed current-voltage characteristics of the MIM (metal-insulator-metal) structure. The $WO_x$ material was used between metal electrodes as the oxide insulator. The structure of the $Al/WO_x/TiN$ shows bipolar resistive switching and the operating direction of the resistive switching is clockwise, which means set at negative voltage and reset at positive voltage. The set process from HRS (high resistance state) to LRS (low resistance state) occurred at -2.6V. The reset process from LRS to HRS occurred at 2.78V. The on/off current ratio was about 10 and resistive switching was performed for 5 cycles in the endurance characteristics. With consecutive switching cycles, the stable $V_{set}$ and $V_{reset}$ were observed. The electrical transport mechanism of the device was based on the migration of oxygen ions and the current-voltage curve is following (Ohm's Law ${\rightarrow}$ Trap-Controlled Space Charge Limited Current ${\rightarrow}$ Ohm's Law) process in the positive voltage region.

Nimonic 80A 초내열합금의 경도와 전기화학적부식에 미치는 시효열처리의 효과 (The Effects of Aging Heat Treatments on the Hardness and Electrocemical Corrosion for the Nimonic 80A Superalloy)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.660-669
    • /
    • 1998
  • In this paper the Hardness and Electro-chemical corrosion of the Nimonic 80A superalloy were studied. It aging heat treatments was carried out at $650^{\circ}C$, $700^{\circ}C$, $750^{\circ}C$,$800^{\circ}C$ and $850^{\circ}C$ with different time of 20min , 30min 1hour, 2hours, 4hours, and 16hours additionally 64hours and 128hours at $650^{\circ}C$. The obtained results were as follows; 1. As aging temperature increased the time for the maximum hardness was reduced from 128hours at $650^{\circ}C$ to 30min at $850^{\circ}C$ whereas the highest hardness was reduced from Hv 381 at $650^{\circ}C$ to Hv 321 at $850^{\circ}C$. 2. In the Electro-chemical corrosion test as a function of aging heat treatment time and tem-perature the corrosion potential was reversely proportional to Hardness which indicated the effects of ${\gamma}/{\gamma}'$ coherency of base material and precipitate. 3. Initiation point of the pitting was observed at grain boundary twin boundary and near${\gamma}'$ pre-cipitates. The results of composition analysis by EDS at this point indicated that sulphur originat-ed from 1N $H_2SO_4$ solution was found in depletion at the grain boundaries and the pit which arouse in the near precipitates were lack of Al Ti and Ni which are the main element of ${\gamma}'$ The depletion of such element was cause breakdown of passive film.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

인공발목관절의 표면 마모 특성 (Surface Tribology of Total Ankle Joint Replacement)

  • Jeong, Yong-Hoon;Jung, Tae-Gon;Yang, Jae-Woong;Park, Kwang-Min;Lee, Su-Won
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.117-117
    • /
    • 2016
  • Total ankle replacement (TAR) is a visible option in the surgical treatment of degenerative or inflammatory diseases of ankle joint. it is attributed to the current TAR which has improvements in surgical technique, uncemented implant fixation and minimally constrained articulation. In the clinical result, they can show promised surgical result when compared to earlier attempts in TAR. However, TAR is still not as successful as total knee replacement (TKR) or total hip replacement (THR), it needs to be note that there are limitations in concerning of long term performance of TAR, the high failure rate still associated with wear of the PE (polyethylene) component that has related with their material property and surface roughness. The aim of this study was to introduce the tribology characteristics of total ankle joint prosthesis with one of TDR model which was fabricated to try multi-axis wear test as a region of motion in ankle joint. The wear specimen of TDR was prepared with Ti-6Al-4V alloy and UHMWPE (ultra-high molecular weight polyethylene) for tibia-talus and bearing component, respectively. A wear test was carried out using a Force 5 (AMTI, Massachusetts, US) wear simulator which can be allowed to move in three axis to flexion-extension ($+3^{\circ}{\sim}-6^{\circ}$), internal-external axial rotation (${\pm}5^{\circ}$), as well as sinusoidal compressive load (1.6 kN, R=10). All tests were performed following standard ISO 14243, wear rate was calculated with weight loss of UHMWPE bearing while the specimen has tested at certain cycles. As based on the preliminary results, wear rate of UHMWPE bearing was $7.9{\times}10^{-6}mg/cycles$ ($R^2=0.86$), calculated loss weight until $10^7cycles$ was 79 mg, respectively.

  • PDF

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.

팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구 (A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication)

  • 황용묵;김광제;소원욱;문상진;이관영
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.458-464
    • /
    • 2006
  • 팔라듐 합금 복합막의 제조는 니켈 분말과 무기화합물의 혼합물로 개질된 튜브형 다공성 스테인레스 스틸 지지체 표면 위에 무전해 도금법(elctroless plating technique)에 의해 팔라듐 - 니켈 - 은을 박막으로 도금하는 형태로 이루어졌다. 일반적인 다공성 금속 지지체는 기공이 크기 때문에 그 자체로서 도금에 적합한 지지층이 되기가 어렵고, 결함이 없는 팔라듐 복합막의 제조가 쉽지 않아 본 연구에서는 금속 지지체와 팔라듐 사이에 중간층(intermediate layer)을 형성하여 이와 같은 문제점을 극복하고자 하였다. 중간층의 소재인 실리카 졸, 알루미나 졸, 이산화티타늄 졸 등의 무기화합물과 니켈 분말의 혼합물로 다공성 금속 지지체 위에 코팅하여 박막을 형성하고 제조 조건에 따른 질소 투과도를 측정하고 비교하였다. SEM 분석법에 의해 니켈과 무기화합물 혼합물의 표면층의 형성 모습도 측정하였다. 제조된 중간층 가운데 이산화티타늄 졸과 니켈의 혼합물이 가장 낮은 질소 투과도와 치밀한 표면층을 나타내었다. 최종적으로 니켈과 실리카의 혼합 중간층으로 이루어진 팔라듐-니켈-은 합금 복합막을 제조하고 수소와 질소의 투과도를 측정하였다. 1기압 이하에서 질소에 대한 수소 선택도는 무한대였으며 수소투과 속도는 1 기압, $500^{\circ}C$에서 $1.39{\times}10^{-2}mol/m^2{\cdot}s$의 값을 나타냈다.

UHF 대역 수동형 RFID 태그 쇼트키 다이오드 특성 분석 및 전압체배기 설계 (Characterization of Schottky Diodes and Design of Voltage Multiplier for UHF-band Passive RFID Transponder)

  • 이종욱;트란난
    • 대한전자공학회논문지SD
    • /
    • 제44권7호통권361호
    • /
    • pp.9-15
    • /
    • 2007
  • 본 논문에서는 UHF 대역 수동 RFID 태그(UHF-band passive RFID tag) 칩 제작에 필수적인 요소인 쇼트키(Schottky) 다이오드를 CMOS 공정으로 제작하고 크기에 따른 특성을 분석하였으며 이를 이용하여 전압체배기를 설계하였다. 쇼트키 다이오드는 Titanium-Silicon 접합을 이용하여 제작되었으며, $4{\times}10{\times}10\;{\mu}m^{2}$의 면적을 가지는 쇼트키 다이오드는 $20\;{\mu}A$의 전류 구동에 대해 약 0.15 V의 순방향 전압 강하의 우수한 특성을 나타내었다. 역방향 파괴전압(breakdown)은 약 -9 V로 수동 RFID 태그칩의 전압체배기에 사용될 수 있는 충분한 값을 나타내었다. 제작된 쇼트키 다이오드의 소신호 등가모델을 이용하여 다이오드의 크기에 따른 순방향 전압강하와 입력 임피던스간의 trade-off에 대해 분석하였다. 이를 이용하여 제작된 6-단 전압체배기는 900 MHz 주파수, 200mV 최대 입력 전압에 대해 1.3 V이상의 출력 전압 특성을 나타내어 인식거리가 비교적 큰 수동형 태그에 적합한 특성을 나타내었다.

동해 울릉분지 남단 주상퇴적물에 대한 최종빙기-홀로세간의 지화학적 기록 변화: 고해양환경 변화 (Last Glacial Maximum-Holocene Variability in Geochemical Records of a Core Sediment from the Southern Part of the Ulleung Basin, East Sea: Implications for Paleoceanographic Changes)

  • 허식;한상준;현상민
    • 한국해양학회지:바다
    • /
    • 제6권2호
    • /
    • pp.71-80
    • /
    • 2001
  • 최종빙기와 흘로세 사이의 전이기에 일어난 동해의 고해양환경 변화를 이해하기 위하여 울릉분지 최남단 대륙사면에서 얻어진 주상시료(95PC-1)퇴적물에 대한 지화학적 고분해 연구를 하였다. 지화학적 결과는 주요 고행양학적변화가 이 전이기에 뚜렷하게 일어나고 있음을 밝히고 있다. 주요원소를 분석한 결과 최종빙기와 홀로세 사이에 뚜렷한 퇴적물의 조성변화를 보이고 있으며 이는 퇴적물의 공급변화가 수반되었음을 지시하고 있다. 퇴적물 중의 $TiO_2/Al_2O_3$는 흘로세와 최종빙기의 퇴적물 조성이 다름을 지시하고 있다. 유기탄소 함량도 약 $0.5{\sim}4%$ 정도의 폭으로 변화하고 있으며 이러한 변화는 평균적인 최종빙기와 간빙기(흘로세)의 값과 비교했을 때 각각 $2{\sim}4$배, 2배 정도 증가하여 전이기에 생물생산이 증가한 것임을 알 수 있다. 대륙기원 유기물의 유입을 지시하는 C/N비도 이 전이기를 중심으로 10이상을 보이고 있어 유기물이 인근 대륙으로부터 유입되었음을 지시하고 있으며, 특히 최종빙기 동안에는 활발하게 대륙으로부터 유기물이 유입되었음을 알 수 있다. 탄산염 함량변화는 흘로세 기간동안에는 비교적 안정하여 약 2.5%전후의 값을 보이고 있다가 전이기에 큰 폭의 변화를 보이면서 최종빙기에는 점진적으로 감소하는 경향을 보이고 있다. 퇴적물의 화학원소에 근거한 풍화지수(CIW)를 조사해본 결과 약 1만년을 경계로 뚜렷하게 변화하고 있으며 이러한 점은 유기물과 탄산염에 나타난 전이기와 잘 일치하고 있다. 입도분석 결과 나타난 최종빙기와 흘로세 간의 실트질 퇴적물의 함량차이는 빙기동안에 강해진 기후요소와 밀접히 관계되는 것으로 생각된다. 따라서 전이기에 나타나는 지화학적 기록변화는 해수면 상승과 결부된 해양환경변화 및 지역적인 기후변동과도 밀접히 관계되고 있음을 지시한다.

  • PDF