• Title/Summary/Keyword: Ti-oxide

Search Result 1,343, Processing Time 0.041 seconds

COMPARISON OF THE SEALING ABILITY OF VARIOUS RETROGRADE FILLING MAIERIALS (수종의 역충전 재료의 치근단 밀폐력 비교)

  • 황윤찬;강인철;황인남;오원만
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.379-386
    • /
    • 2001
  • This study was performed to evaluate the sealing ability of various retrograde filling materials by using bacterial penetration and dye penetration test. One hundred and forty extracted human teeth with single, straight canals and mature apiece were collected and used for this study. All canals were instrumented using an engine driven Ni-Ti file (ProFile). After removing 3mm from the apex of tooth, a standardized 3mm root end cavity was prepared using an ultrasonic instrument. The 70 teeth were randomly divided into 7 groups : 6 groups for retrograde filling using Super-EBA, ZOE, Chelon-Silver, IRM, ZPC and amalgam. The 7th group was used as a negative control. Nail varnish was applied to all external root surfaces to the level of the reseated root ends to prevent lateral microleakages. The specimens were then sterilized in an ethylene oxide sterilizer for 24 hours. 2 mm of the reseated root was immersed in a culture chamber containing a Tripticase Soy Broth with a phenol red indicator. The coronal access of each specimen was inoculated every 72 hours with suspension of Proteus vulgaris. The culture media were observed every 24hours for color change indicating bacterial contamination. The specimens were observed for 4weeks. The remaining 70 teeth were submitted to a dye penetration test. The canals of all teeth were first sealed with AH26 and obturated using an Obtura II system. Root resection, root end preparation and retrograde filling was performed as above. All specimens were suspended in 2% methylene blue dye for 72 hours before being ion gitudinally split. The degree of dye penetration was then measured using a stereomicroscope at 10 magnification and evaluated. The results were as floows : 1. In the bacterial penetration, the degree of leakage was the lowest in the Super-EBA, followed by, in ascending order, ZOE, Chelon-Silver IRM and ZPC. The amalgam showed highest bacterial leakage of all(p<0.01). 2. In the dye penetration, the degree of microleakage was the lowest in the Chelon-Silver and Super-EBA, followed by, in ascending order, IRM, ZPC. The ZOE and amalgam showed the highest microleakage of all (p<0.05). These results suggested that the eugenol based cement, Super-EBA, have excellent sealing ability as a retrograde filling material.

  • PDF

WN 박막을 이용한 저항 변화 메모리 연구

  • Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.403-404
    • /
    • 2013
  • 최근 scaling down의 한계에 부딪힌 DRAM과 Flash Memory를 대체하기 위한 차세대 메모리(Next Generation Memory)에 대한 연구가 활발히 진행되고 있다. ITRS (international technology roadmap for semiconductors)에 따르면 PRAM (phase change RAM), RRAM (resistive RAM), STT-MRAM (spin transfer torque magnetic RAM) 등이 차세대 메모리로써 부상하고 있다. 그 중 RRAM은 간단한 구조로 인한 고집적화, 빠른 program/erase 속도 (100~10 ns), 낮은 동작 전압 등의 장점을 갖고 있어 다른 차세대 메모리 중에서도 높은 평가를 받고 있다 [1]. 현재 RRAM은 주로 금속-산화물계(Metal-Oxide) 저항 변화 물질을 기반으로 연구가 활발하게 진행되고 있다. 하지만 근본적으로 공정 과정에서 산소에 의한 오염으로 인해 수율이 낮은 문제를 갖고 있으며, Endurance 및 Retention 등의 신뢰성이 떨어지는 단점이 있다. 따라서, 본 연구진은 산소 오염에 의한 신뢰성 문제를 근본적으로 해결할 수 있는 다양한 금속-질화물(Metal-Nitride) 기반의 저항 변화 물질을 제안해 연구를 진행하고 있으며, 우수한 열적 안정성($>450^{\circ}C$, 높은 종횡비, Cu 확산 방지 역할, 높은 공정 호환성 [2] 등의 장점을 가진 WN 박막을 저항 변화 물질로 사용하여 저항 변화 메모리를 구현하기 위한 연구를 진행하였다. WN 박막은 RF magnetron sputtering 방법을 사용하여 Ar/$N_2$ 가스를 20/30 sccm, 동작 압력 20 mTorr 조건에서 120 nm 의 두께로 증착하였고, E-beam Evaporation 방법을 통하여 Ti 상부 전극을 100 nm 증착하였다. I-V 실험결과, WN 기반의 RRAM은 양전압에서 SET 동작이 일어나며, 음전압에서 RESET 동작을 하는 bipolar 스위칭 특성을 보였으며, 읽기 전압 0.1 V에서 ~1 order의 저항비를 확보하였다. 신뢰성 분석 결과, $10^3$번의 Endurance 특성 및 $10^5$초의 긴 Retention time을 확보할 수 있었다. 또한, 고저항 상태에서는 Space-charge-limited Conduction, 저저항 상태에서는 Ohmic Conduction의 전도 특성을 보임에 따라 저항 변화 메카니즘이 filamentary conduction model로 확인되었다 [3]. 본 연구에서 개발한 WN 기반의 RRAM은 우수한 저항 변화 특성과 함께 높은 재료적 안정성, 그리고 기존 반도체 공정 호환성이 매우 높은 강점을 갖고 있어 핵심적인 차세대 메모리가 될 것으로 기대된다.

  • PDF

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구)

  • Kim, Dayoung;Hwang, Myungwhan;Woo, Insung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide($Ca(OH)_2$), CaO, and $TiO_2$ were used as catalysts. Harmful air polluting gases such as $SO_2$ were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide($SO_2$). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the $Ca(OH)_2$ catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas $SO_2$ with the $Ca(OH)_2$ catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas $SO_2$ by the $Ca(OH)_2$ catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling (고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성)

  • Yim, Da-Mi;Park, Jong Kwan;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

Selective Epitaxial Growth of Si and SiGe using Si-Ge-H-Cl System for Self-Aligned HBT Applications (Si-Ge-H-Cl 계를 이용한 자기정렬 HBT용 Si 및 SiGe의 선택적 에피성장)

  • 김상훈;박찬우;이승윤;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.573-578
    • /
    • 2003
  • Low temperature selective epitaxial growth of Si and SiGe has been obtained using an industrial single wafer chemical vapor deposition module operating at reduced pressure. Epitaxial Si and heteroepitaxial SiGe deposition with Ge content about 20 % has been studied as extrinsic base for self-aligned heterojunction bipolar transistors(HBTs), which helps to reduce the parasitic resistance to obtain higher maximum oscillation frequencies(f$\_$max/). The dependence of Si and SiGe deposition rates on exposed windows and their evolution with the addition of HCl to the gas mixture are investigated. SiH$_2$Cl$_2$ was used as the source of Si SEG(Selective Epitaxial Growth) and GeH$_4$ was added to grow SiGe SEG. The addition of HCl into the gas mixture allows increasing an incubation time even low growth temperature of 675∼725$^{\circ}C$. In addition, the selectivity is enhanced for the SiGe alloy and it was proposed that the incubation time for the polycrystalline deposit on the oxide is increased probably due to GeO formation. On the other hand, when only SiGe SEG(Selective Epitaxial Growth) layer is used for extrinsic base, it shows a higher sheet resistance with Ti-silicide because of Ge segregation to the interface, but in case of Si or Si/SiGe SEG layer, the sheet resistance is decreased up to 70 %.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Effect of Particle Size of the Filler on the Thermal Properties of the Sealing Glass for Solid Oxide Fuel Cells (필러의 입자크기가 고체전해질 연료전지용 밀봉유리의 열적 특성에 미치는 영향)

  • Cho, Min-Young;Moon, Ji-Woong;Lee, Mi-Jae;Choi, Byong-Hyun;Park, Sun-Min;Hwang, Hae-Jin;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-305
    • /
    • 2007
  • SOFC용 밀봉유리$({\sim}10.0{\times}10^{-7}/K)$의 열팽창 계수를 SUS430$({\sim}12.0{\times}10^{-7}/K)$ 인터커넥터에 매칭 시키기 위하여 모유리에 비하여 열팽창계수가 큰 $CaTiO_3\;({\sim}13.5{\times}10^{-7}/K)$ 입자를 필러로서 첨가하였다. 필러입자의 첨가량이 증가함에 따라 밀봉재의 열팽창 계수가 증가하고, 동일 함량의 필러를 첨가하는 경우 필러 입자의 크기가 작을 수록 밀봉재의 연화점 상승 폭이 커서 SUS430 기판과의 접합 상태가 불량해짐을 관찰하였다. 필 테스트, 접합시험, 미세구조 분석 등을 통하여 필러 입자 크기가 증가 할 수록 SUS430과의 접합이 가능한 범위 내에서 보다 많은 양의 필러를 첨가하는 것이 가능하기 때문에 열팽창 계수 제어가 용이하다는 것을 확인 할 수 있었다.

  • PDF