• Title/Summary/Keyword: Ti-Ni-Cu shape memory alloy

Search Result 18, Processing Time 0.023 seconds

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at%Ni-10at.% Cu Alloys (Ti-42.5at.%Ni-10at.%Cu합금의 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • Shape memory recoverable stress and strain of Ti-42.5at%Ni-10at%Cu alloys were measured by means of constant temperature tensile tests. The alloys' transformation behavior is B2 - B19 by DSC result. The strain by tensile stress were perfectly recovered by heating at any testing conditions but shape memory recoverable stress increased to 66MPa and then slightly decreased. Transformation temperatures from thermal cycling under constant uniaxial applied tensile loads linearly increased by increasing tensile load and their thermal hysteresis are about 110K and their maximum recoverable strain is 6.5% at 100MPa condition.

Phase Changes and Microstructural Properties of Ti Alloy Powders Produced by using Attrition Milling Method (어트리션 밀링법으로 제조된 티타늄합금의 상변화 및 미세조직특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • Microstructure and phase transformation of Ti-Ni-Cu alloy powders produced by using attrition milling method were studied. Mixed powders of Ti-(50-X)Ni-XCu ($X=0{\sim}20$ at%) in composition range were mechanically alloyed for maximum 20 hours by using SUS 1/4" ball in argon atmosphere. Ball to powder ratio was 50: 1 and impeller speed was 350rpm. Mechanically alloyed with attrition millimg method. powder was heat treated at the temperature up to $850^{\circ}C$ for 1 hour in the $10^{-6}$ torr vacuum. Ti-Ni-Cu alloy powders have been fabricated by attrition milling method. and then phase transformation behaviours and microstructual properties of the alloy powders were investigated to assist in improving the the high damping capacity of Ti-Ni-Cu shape memory alloy powders. The results obtained are as follows: 1. After heat treating of fully mechanically alloyed powder at $850^{\circ}C$ for 1hour. most of the B2 and B 19' phases was formed and $TiNi_3$ were coexisted. 2. The B 19' martensite were formed in Ti-Ni-Cu alloy powders whose Cu-content is less than 5a/o. where as the B19 martensite in those whose Cu-content is more than 10at%. 3. The powders of as-milled Ti-Ni-Cu alloys whose Cu-contents is less than 5at% are amorphous. whereas those of as-milled Ti-Ni-Cu alloys whose Cu-content is more than 10at% are crystalline. This means that Cu addition tends to suppress amorphization of Ti-Ni alloy powders.

  • PDF

Grain Size Refinement in CuAlNi Shape Memory Alloy using Melt-spun Ribbon (급냉응고된 Ribbon을 이용한 CuAINi 형상기억합금의 결정미세화)

  • Choe, Yeong-Taek
    • 연구논문집
    • /
    • s.22
    • /
    • pp.127-139
    • /
    • 1992
  • The mechnial properties such as fracture strength, ductility and fatigue strength of Cu shape memory alloy are lower than those of Ti-Ni SMA, because of their high elastic anisotropy and large grain size. And in order to improve the mechanical property of Cu SMA, some techniques such as casting method by addition of refining element, powder metallurgy and rapid solidification process have been studied on the refinement of the grain size of Cu SMA. This study was carried out to refine the grain size of CuAlNi SMA by applying the melt spinning method. According to this study, the conclusions are as follows; - grain size of the melt-spun ribbon was about $1\mum$ - there was not change in grain size, although increasing of hot pressing temperature -grain size of the hot-extruded specimen was about $30-40\mum$, it is more refiner than that of castings

  • PDF

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys

  • Im, Yeon-Min;Jeon, Young-Min;Kim, Min-Su;Lee, Yong-Hee;Kim, Min-Kyun;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.

Powder Production of CuAINi Base Alloy via Rotating Disk Atomization (회전원반분사법에 의한 CuA1Ni계 합금 분말제조)

  • 류봉선
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.145-152
    • /
    • 1994
  • Atomizing mode and powder characteristics of CuA1Ni base shape memory alloy in rotating disk atomization were investigated in accordance with disk materials and additional elements. Produced powders were classified into two types of spherical and flake shape. In the case of CuAlNiBTi and CuAlNiZr alloy, high yield rate and fine powder were obtained. This tendency was same when we used oxide coated disks. We concluded that this results were steno from the wetting characteristics change between molten metal and disk surface. Especially, due to the reactive properties of Ti and Zr with ceramic disk, the change of atomizing appearance and powder characteristics were noticeable.

  • PDF

Experimental studies on the fatigue life of shape memory alloy bars

  • Casciati, Sara;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.73-85
    • /
    • 2010
  • The potential offered by the thermo-mechanical properties of shape memory alloys (SMA) in structural engineering applications has been the topic of many research studies during the last two decades. The main issues concern the long-term predictability of the material behaviour and the fatigue lifetime of the macro structural elements (as different from the one of wire segments). The laboratory tests reported in this paper are carried out on bar specimens and they were planned in order to pursue two objectives. First, the creep phenomenon is investigated for two different alloys, a classical Ni-Ti alloy and a Cu-based alloy. The attention is then focused on the Cu-based alloy only and its fatigue characteristics at given temperatures are investigated. Stress and thermal cycles are alternated to detect any path dependency.

Preparation of TiNi and Ti-40Ni-l0Cu shape memory alloy thin films using a PLD(Plused Laser Ablation) technique (PLD법을 이용한 Ti-Ni 및 Ti-40Ni-10Cu 형상기억합금 박막의 제조)

  • Im, Hee-Joong;Kim, Dong-Hwan;Ahn, Jeung-Sun;Tadaoki Mitani;Kim, Tae-Youn;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.143-143
    • /
    • 2003
  • 현대 산업이 발전함에 따라 다양한 기기들의 초소형화가 급속히 진행되고 있다. 이러한 요구에 부응하기 위하여 미세구동소자(Microelectromechanical system)의 개발이 많은 연구 그룹들에 의해서 이루어지고 있다. 미세구동소자에 응용을 하기 위해 개발되어지고 있는 여러 가지 소재들 중 $\ulcorner$형상기억합금 $\lrcorner$은 기존의 바이메탈이나 피에조 소자에 비하여 작동거리가 우수하기 때문에 그 가능성을 인정받고 있지만, 벌크재료는 느린 냉각속도 때문에 반응속도가 느린 단점이 있기 때문에 박막화 할 필요성이 있다. 이러한 이유로 여러 그룹들에 의해 형상기억합금의 박막화가 시도되고 있으나, 조성에 의해 특성의 변화가 심한 형상기억합금의 정밀한 조성제어가 힘들다고 알려져 있다. 몇몇 연구 그룹에서 RF magnetron sputtering법을 이용하여 Ti-Ni합금 박막을 성공적으로 제조하였다는 보고가 있지만, 타겟 조성 및 형태 등의 정밀한 제어가 필요하므로 3원 합금 박막 등을 제조할 경우에는 또 다시 타겟의 조건을 정밀하게 제어해야 할 필요성이 있다. 따라서 본 연구에서는 산화물 박막등의 제조에 있어서 타겟 조성과 제조된 박막 조성이 잘 일치하여 조성제어가 쉽게 이루어진다고 알려져 있는 PLD법을 도입하여 형상기억합금 박막제조에 적용가능한지를 검토하는 것을 목적으로 하였다.

  • PDF

The B2-B19-B19' Transformation in Ti-(45-x)Ni-5Cu-xMn (at%) (x = 0.5-2.0) Alloys

  • Jeon, Yeong-Min;Kim, Min-Gyun;Kim, Min-Su;Lee, Yong-Hee;Im, Yeon-Min;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • Effect of substitution of Mn for Ni on transformation behavior, shape memory characteristics and superelasticity of Ti45Ni-5Cu alloy has been investigated by means of electrical resistivity measurements, X-ray diffraction, thermal cycling tests under constant load and tensile tests. The one-stage B2-B19' transformation occurred when Mn content was 0.5 at%, above which the two-stage B2-B19-B19' transformation occurred. A temperature range where the B19 martensite exists was expanded with increasing Mn content because decreasing rate of Ms (60 K / % Mn) was larger than that of Ms' (40 K / % Mn). Ti-(45-x)Ni-5Cu-xMn alloys were deformed in plastic manner with a fracture strain of 60 % ~ 32 % depending on Mn content. Clear superelasticity was found in fully annealed Ti-(45-x)Ni-5Cu-xMn alloys with Mn content more than 1.0 at%, which was ascribe to a solid solution hardening by substitution of Mn for Ni.