• Title/Summary/Keyword: Ti-C-SiC composite

Search Result 115, Processing Time 0.025 seconds

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Property of Composite Titanium Silicides on Amorphous and Crystalline Silicon Substrates (아몰퍼스실리콘의 결정화에 따른 복합티타늄실리사이드의 물성변화)

  • Song Oh-Sung;Kim Sang-Yeob
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.1-5
    • /
    • 2006
  • We prepared 80 nm-thick TiSix on each 70 nm-thick amorphous silicon and polysilicon substrate using an RF sputtering with $TiSi_2$ target. TiSix composite silicide layers were stabilized by rapid thermal annealing(RTA) of $800^{\circ}C$ for 20 seconds. Line width of $0.5{\mu}m$ patterns were embodied by photolithography and dry etching process, then each additional annealing process at $750^{\circ}C\;and\;850^{\circ}C$ for 3 hours was executed. We investigated the change of sheet resistance with a four-point probe, and cross sectional microstructure with a field emission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM), respectively. We observe an abrupt change of resistivity and voids at the silicide surface due to interdiffusion of silicide and composite titanium silicide in the amorphous substrates with additional $850^{\circ}C$ annealing. Our result implies that the electrical resistance of composite titanium silicide may be tunned by employing appropriate substrates and annealing condition.

  • PDF

Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

Preparation of TiO2-SiO2 Sol and Its Photo-Catalyst Properties for High Temperatures (고온 소성용 TiO2-SiO2계 광촉매의 제조 및 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.471-475
    • /
    • 2004
  • TiO$_2$, SiO$_2$, and PBA(Pseudo Boehemite Alumina) sol were prepared by sol-gel process. The particle sizes of these sol exhibited uniform 10∼30 nm. As the amount of SiO$_2$ sol increased, the temperature of phase transition (from anatase phase to rutile phase) was raised temperature than $600^{\circ}C$, which attributed to the enhanced photocatalyst properties. Also, the anatase phase was obtained with very small amount of the rutile phase from the addition of SiO$_2$ (10∼30 wt%) at annealing temperature of 120$0^{\circ}C$. The specimen with 20 wt% SiO$_2$ sol exhibited the maximum photocatalyst properties. But, the specimen with PBA sol did not affect photocatalytic activity due to the presence of rutile phase.

The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering (액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

Pt/Ti/Si 기판에서의 후속열처리에 따른 PZT 박막의 형성 및 특성

  • 백상훈;백수현;황유상;마재평;최진석;조현춘
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.64-65
    • /
    • 1993
  • MPB 조성영역인 Zr/Ti=52/48의 composite ceramic target을 사용하여 RF magnetron sputtering 방법으로 기판온도 약 30$0^{\circ}C$에서 RZT 박막을 Pt/Ti/Si 기판위에 증착시켰다. 안정상인 perovskite 구조를 형성시키기 위하여 PbO분위기에서 furnace annealing 과 Repid thermal annealing을 실시하여 열처리 방법에 따른 상형성 및 계면반응과 그에 따른 전기적 특성을 고찰 하였다. Pt 의 두께가 250$\AA$인 경우 furnace annealing 시 $650^{\circ}C$에서 perouskite 상이 형성되었으나 Pt층이 산소의 확산을 방지하지 못하여 상부의 Ti 층이 TiOx로 변태하였으며 하부의 Ti는 Si 과 반응하여 Ti-silicide 롤 변태하였다. 또한 75$0^{\circ}C$,60sec 인 경우 Pt 층의 응집화가 관찰되어 하부전극으로서 적용이 적절하지 못하다. 급속열처리를 실시한 경우에도 마찬가지로 Ti 층이 TiOx 와 silicide 층으로 변태되었다. Pt의 두께가 1000$\AA$인 경우에도 250$\AA$와는 달리 RTA 시 (III)방향으로 Furace annealing 시(001)방향으로 우선 성장하였다. 이는 Ti(001), P(111),PZT(111)면의 lattic mismatch 가 매우 작은데다 RTA 시 계면반응이 거의발생하지 않아 PZT 박막이 (111) 방향으로 우선 성장한 것으로 보인다. Furnace annealing 경우는 심한 계면반응이 발생하여 Pt층에 어느 정도 영향을 주었기 때문에 우선성장 방향이 바뀌었다구 생각한다.

  • PDF

Characterizations of Sputtered PZT Films on Pt/Ti/Si Substrates. (Pt/Ti/Si 기판위에 형성시킨 PZT박막의 특성)

  • Hwang, Yu-Sang;Baek, Su-Hyeon;Baek, Sang-Hun;Park, Chi-Seon;Ma, Jae-Pyeong;Choe, Jin-Seok;Jeong, Jae-Gyeong;Kim, Yeong-Nam;Jo, Hyeon-Chun
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.143-151
    • /
    • 1994
  • On PT/Ti/Si substrates, PZT thln fllms are deposited at $300^{\circ}C$ by rf magnetron sputtering uslng a $(PbZr_{52}, Ti_{48})O_{3}$ composltc cerarnlc target. To abtaln, the stable phase, perovskltc structure, furnace annealmg techmque had been cmplo:~d In PbO amb~ent for the $550^{\circ}C$-$750^{\circ}C$ temperature ranges. On Pt(250$\AA$)/Ti(500$\AA$)/Si, Pt(1000)$\AA$/Ti(500$\AA$)/Si substrates, effects of Ti layer and Pt thickness are studled. Though thickness of the Pt layer 1s 1000$\AA$). oxygen diffusion is not prevented and accelerated by Ti layer actlng for oxygen sink sites durmg furnace annealing. The upper TI layer 1s transformed Into TIOX by oxyen dlffuslon and lower Ti layer Into silicide with in-diffused Pt. The formation of TiOx layer seems to affect the orlentatton of the PZT layer. Furnace annealed f~lm shows ferroelectr~c and electrical properties wth a remanent polarlzation of 3.3$\mu A /\textrm{cm}^2$, , coerclve fleld of 0.15MV/cm, a=571 (10kHz), leakage current 32.65$\mu A /\textrm{cm}^2$, , breakdown voltage of 0.4OMV/cm.

  • PDF

Effects of additives and sintering temperature on phase evolution and properties of carbon-clay ceramic composites

  • Aramide, Fatai Olufemi;Adepoju, O.D.;Popoola, Abimbola Patricia
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.483-491
    • /
    • 2018
  • Effects of additives on phase development and physico-mechanical properties of mullite-carbon was investigated. Powdered clay, kaolinite and graphite of predetermined compositions were blended with additives using ball mill for 3 hrs at 60 rev/min. Samples were produced by uniaxial compression and sintered between $1400^{\circ}C$ and $1600^{\circ}C$ for one hr. They were characterized for various properties, developed phases and microstructural features. It was observed that the properties and phase developments in the samples were influenced by the additives. 10 wt % SiC served as nucleating point for SiC around $1400^{\circ}C$. 10wt % $TiO_2$ lead to development of 2.5 wt % TiC at $1500^{\circ}C$ which increased to 6.8 wt % at $1600^{\circ}C$. Ifon clay in the sample leads to development of anorthite and microcline in the samples. 10wt % $TiO_2$ is effective as anti-oxidant for graphite up to $1500^{\circ}C$. Base on strength and absorbed energy, sample C (with 10wt % $TiO_2$) sintered at $1500^{\circ}C$ is considered to be optimum.

Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis (와이블 통계 해석에 의한 ZrO2 복합 세라믹스의 기계적 특성)

  • Kim, Seon Jin;Kim, Dae Sik;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2015
  • The Vickers test can be used for all types of materials, and it has one of the widest scales among hardness tests. The hardness may be considered as a probability variable when evaluating the mechanical properties of materials. In this study, we investigate the statistical properties of the bending strength and Vickers hardness in $ZrO_2$ monolithic and $ZrO_2/SiC$ composites depending on the amount of $TiO_2$ additives. The bending strength and Vickers hardness were found to agree well with the Weibull probability distribution. We evaluate the scale parameter and shape parameter in as-received $ZrO_2$ and $ZrO_2/SiC/TiO_2$ ceramics, as well as their heat treated ceramics. We also evaluate the parameters in accordance with the increase in in the indentation load.

Manufacture and Properties of ${\beta}$-SIC-TiB$_2$ Composites Densified by Pressureless Annealing (無加壓 열처리에 의한 ${\beta}$-SIC-TiB$_2$ 複合體의 製造와 特性)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.221-225
    • /
    • 2001
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering was investigated. The ${\beta}-SiC-TiB_2$ ceramic composites were hot-press sintered and pressureless-annealed by adding 16, 20, 24 wt% ${\beta}-SiC-TiB_2$(6:4 wt%) powder as a liquid forming additives at low temperature(1800 $^{\circ}C$) for 4 h. Phase analysis of composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$). The relative density was over 95-88 % of the theoretical density, and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest value of 5.88 MPa${\cdot}m^{1/2}$ for composites added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest value of $5.22{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm$ for composite added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature, and was all positive temperature coefficeint resistance(PTCR) against temperature up to 900 $^{\circ}C$.

  • PDF