• Title/Summary/Keyword: Ti-Alloy

Search Result 1,330, Processing Time 0.022 seconds

Elevation of Properties of Al-Nb-Ar alloys Fabricated by Mechanical Alloying Metho (기계적합금화법을 이용한 고온 고강도 Al-Nb-Zr 합금 제조 및 특성 평가)

  • Kwon, Dae-Hwan;Ahn, In-Shup;Kim, Sang-Shik;Lee, Kwang-Min;Park, Min-Woo
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.499-504
    • /
    • 2000
  • Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on Ti, Zr, V, Nb and Ta for use aircraft structure materials in an elevated environment. The effect of Zr additions on the formation behaviour of Al-Nb alloy was investigated. Al-1.3at.%(Nb+Zr) alloys with different Nb to Zr atomic 1:3, 1:1 and 3:1 were prepared by mechanical alloying(MA). The morphological changes and microstructural evolution of Al-Nb-Zr powders during MA were investigated by SEM, XRD and TEM. The intermetallic compound phase of $Nb_2Al\; and\; Al_3Zr_4$ was identified by X-ray diffraction. The intemetallic compound of $Al_3Zr,\; Al_3Nb$ and $Al_3Zr_4$ were formed by heat treatment for 1 hour at $500^{\circ}C$. The size of intermetallic compounds observed by TEM were approximately below 100nm, when they were heat treated after mechanically alloying for 30 hours.

  • PDF

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS (타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교)

  • Kim, Ji-Hye;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.

The Study of Ni-Pd Alloy Characteristics to Form a NiSi for Shallow S/D Junction (Shallow S/D Junction에 적용 가능한 NiSi를 형성하기 위한 Ni-Pd 합금의 특성 연구)

  • Lee, Won-Jae;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Kim, Yong-Jin;Zhang, Ying-Ying;Zhong, Zhun;Kim, Do-Woo;Cha, Han-Seob;Heo, Sang-Bum;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • In this paper, the formation and thermal stability of Ni-silicide using Ni-Pd alloys is studied for ultra shallow S/D junction of nano-scale CMOSFETs. There are no different effects when Ni-Pd is used in single structure and TiN capping structure. But, in case of Cobalt interlayer structure, it was found that Pure Ni had lower sheet resistance than Ni-Pd, because of a thick silicide. Also, Ni-Pd has merits that surface of silicide and interface between silicide and silicon have a good morphology characteristics. As a result, Ni-Pd is an optimal candidate for shallow S/D junction when cobalt is used for thermal stability.

  • PDF

Thermoelectric Properties of n-Type Half-Heusler Compounds Synthesized by the Induction Melting Method

  • Du, Nguyen Van;Lee, Soonil;Seo, Won-Seon;Dat, Nguyen Minh;Meang, Eun-Ji;Lim, Chang-Hyun;Rahman, Jamil Ur;Kim, Myong Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.342-345
    • /
    • 2015
  • The n -type Hf0.25Zr0.25Ti0.5NiSn0.998Sb0.002 Half-Heusler (HH) alloy composition was prepared by using the induction melting method in addition to the mechanical grinding, annealing, and spark plasma sintering processes. Analysis of X-ray diffraction (XRD) results indicated the formation of a pure phase HH structured compound. The electrical and thermal properties at temperatures ranging from room temperature to 718 K were investigated. The electrical conductivity increased with increasing temperatures and demonstrated nondegenerate semiconducting behavior, and a large reduction in the thermal conductivity to the value of 2.5 W/mK at room temperature was observed. With the power factor and thermal conductivity, the dimensionless figure of merit was increased with temperature and measured at 0.94 at 718 K for the compound synthesized by the induction melting process.

A Study on the Stress Ratio effect of Metal Matrix Composites on Fatigue Crack Growth Behavior (금속기복합재료의 피로균열성장거동에 대한 응력비 영향에 관한 연구)

  • Choi, Yong-Bum;Huh, Sun-Chul;Yoon, Han-Ki;Park, Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.155-160
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties. It was also highlighted as the materials of frontier industry because strength, heat-resistant, corrosion-resistant, wear-resistant were superiored. In this study the strength properties of $Al_{18}B_4O_{33}/AC4CH$ were represented mixing the binder of $Al_2O_3$ and $TiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_4O_{33}/AC4CH$ was fabricated at the melt temperature of $760^{\circ}C$ the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa and observed SEM. Fatigue crack growth rate tests on compact tension specimen(half-size) of thickness 12.5mm were conducted by using sinusoidal waveform. Compact tension specimens(half-size) were used and fatigue crack growth rate da/dN and stress intensity factor range ${\Delta}K$ were analyzed concerning to the R value of 0.1 and 0.05. In order to find out the value of ${\Delta}K$, load amplitude constant method was applied by the standard fatigue testing method describes in ASTM E647-95a. As the results of this study, Fatigue crack growth rate increased with in creasing the load ratio, Consequently, At equivalent stress intensity factors, the fatigue crack growth rates in MMC were faster than those of AC4CH alloy. then the fatigue life and the fatigue crack growth rate was investigated using scanning election microscopy(SEM)

  • PDF

Manufacturing Ti-Alloy Frames of Classes with High-Precision Laser Beam Welding (초정밀 레이저용접을 이용한 티타늄 안경테 제조)

  • 황용화;김수성;이형권;민덕기;고진현
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • An attempt was made to develop commercially pure titanium frames of glasses with a high-precision laser beam welding machine, in which a resonator with 12kw of the peak power and 200 W of maximum mean power has the capacity of variable in the range of 0.08~10 ms pulse width. In addition the optical fiber beam transmission with 400 ${\mu}{\textrm}{m}$ of the core diameter and a weld chamber to contain specimens in the inert gas atmosphere were also designed and used. In the present study. titanium frames of glasses parts such as temple plus spring hinge. bridge and top bar were experimentally manufactured by utilizing the optimum welding parameters with the optical fiber of GI 400 ${\mu}{\textrm}{m}$, 2.9J energy per pulse, and focussing position for Tee and butt joints. The titanium welded joints with laser beam welding did not reveal any severe weld defects or weld bead appearance except some pores in the weld section.

  • PDF