Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.6.342

Thermoelectric Properties of n-Type Half-Heusler Compounds Synthesized by the Induction Melting Method  

Du, Nguyen Van (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology, School of Advanced Material Engineering, Changwon National University)
Lee, Soonil (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology)
Seo, Won-Seon (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology)
Dat, Nguyen Minh (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology)
Meang, Eun-Ji (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology)
Lim, Chang-Hyun (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology)
Rahman, Jamil Ur (Energy & Environmental Materials Division, Korea Institute of Ceramic Engineering & Technology, School of Advanced Material Engineering, Changwon National University)
Kim, Myong Ho (School of Advanced Material Engineering, Changwon National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.6, 2015 , pp. 342-345 More about this Journal
Abstract
The n -type Hf0.25Zr0.25Ti0.5NiSn0.998Sb0.002 Half-Heusler (HH) alloy composition was prepared by using the induction melting method in addition to the mechanical grinding, annealing, and spark plasma sintering processes. Analysis of X-ray diffraction (XRD) results indicated the formation of a pure phase HH structured compound. The electrical and thermal properties at temperatures ranging from room temperature to 718 K were investigated. The electrical conductivity increased with increasing temperatures and demonstrated nondegenerate semiconducting behavior, and a large reduction in the thermal conductivity to the value of 2.5 W/mK at room temperature was observed. With the power factor and thermal conductivity, the dimensionless figure of merit was increased with temperature and measured at 0.94 at 718 K for the compound synthesized by the induction melting process.
Keywords
Thermoelectric; Half-Heusler; Induction melting; Thermal property; Charge transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ballikaya, N. Uzar, S. Yildirim, J. R. Salvador, and C. Uher, J. Solid State Chem., 193, 31 (2012). [DOI: http://dx.doi.org/10.1016/j.jssc.2012.03.029]   DOI
2 S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, and M. G. Kanatzidis, J. Am. Chem. Soc., 133, 16588 (2011). [DOI: http://dx.doi.org/10.1021/ja206380h]   DOI
3 K. Biswas, J. He, G. Wang, S. H. Lo, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci., 4, 4675 (2011). [DOI: http://dx.doi.org/10.1039/c1ee02297k]   DOI
4 Y. Gelbstein, Y. Rosenberg, Y. Sadia, and M. Dariel, J. Phys. Chem. C, 114, 13126 (2010). [DOI: http://dx.doi.org/10.1021/jp103697s]   DOI
5 V. Kuznetsov, L. Kuznetsova, A. Kaliazin, and D. Rowe, J. Mater. Sci., 37, 2893 (2002). [DOI: http://dx.doi.org/10.1023/A:1016092224833]   DOI
6 J. J. Shen, L. P. Hu, T. J. Zhu, and X. B. Zhao, Appl. Phys. Lett., 99, 124102 (2011). [DOI: http://dx.doi.org/10.1063/1.3643051]   DOI
7 M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater., 19, 3476 (2009). [DOI: http://dx.doi.org/10.1002/adfm.200901261]   DOI
8 B. C. Sales, D. Mandrus, R. K. Williams, Science, 272, 1325 (1996). [DOI: http://dx.doi.org/10.1126/science.272.5266.1325]   DOI
9 Z. C. Cai, P. Fan, Z. H. Zheng, P. J. Liu, T. B. Chen, J. T. Luo, G. X. Liang, and D. P. Zhang, Appl. Surf. Sci., 280, 225 (2013). [DOI: http://dx.doi.org/10.1016/j.apsusc.2013.04.138]   DOI
10 F. J. Disalvo, Science, 285, 703 (1999). [DOI: http://dx.doi.org/10.1126/science.285.5428.703]   DOI
11 N. Shutoh and S. Sakurada, J. Alloys Compd., 389, 204 (2005). [DOI: http://dx.doi.org/10.1016/j.jallcom.2004.05.078]   DOI
12 G. Wiedermann and R. Franz, Ann. Phys. Lpz., 89, 497 (1853).
13 M. Schwall and B. Balke, Phys. Chem. Phys., 15, 1870 (2013).
14 N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).
15 S. Sakurada and N. Shutoh, Appl. Phys. Lett., 86, 082105 (2005). [DOI: http://dx.doi.org/10.1063/1.1868063]   DOI
16 G. Rogl, A. Grytsiv, M. Falmbigl, E. Bauer, C. Mangler, C. Rentenberger, M. Zehetbauer, and P. Rogl, Acta Mater., 60, 4487 (2012). [DOI: http://dx.doi.org/10.1016/j.actamat.2012.04.038]   DOI