• Title/Summary/Keyword: Ti substrate

Search Result 1,385, Processing Time 0.023 seconds

A Materials Approach to Resistive Switching Memory Oxides

  • Hasan, M.;Dong, R.;Lee, D.S.;Seong, D.J.;Choi, H.J.;Pyun, M.B.;Hwang, H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.66-79
    • /
    • 2008
  • Several oxides have recently been reported to have resistance-switching characteristics for nonvolatile memory (NVM) applications. Both binary and ternary oxides demonstrated great potential as resistive-switching memory elements. However, the switching mechanisms have not yet been clearly understood, and the uniformity and reproducibility of devices have not been sufficient for gigabit-NVM applications. The primary requirements for oxides in memory applications are scalability, fast switching speed, good memory retention, a reasonable resistive window, and constant working voltage. In this paper, we discuss several materials that are resistive-switching elements and also focus on their switching mechanisms. We evaluated non-stoichiometric polycrystalline oxides ($Nb_2O_5$, and $ZrO_x$) and subsequently the resistive switching of $Cu_xO$ and heavily Cu-doped $MoO_x$ film for their compatibility with modem transistor-process cycles. Single-crystalline Nb-doped $SrTiO_3$ (NbSTO) was also investigated, and we found a Pt/single-crystal NbSTO Schottky junction had excellent memory characteristics. Epitaxial NbSTO film was grown on an Si substrate using conducting TiN as a buffer layer to introduce single-crystal NbSTO into the CMOS process and preserve its excellent electrical characteristics.

Biological Effects of Ceramic-coating on Titanium

  • Sohn, Sung-Hwa;Lee, Jae-Bum;Kim, Ki-Nam;Kim, Hye-Won;Kim, In-Kyoung;Lee, Seung-Ho;Seo, Sang-Hui;Kim, Yu-Ri;Lee, Seung-Min;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.97-105
    • /
    • 2006
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of ceramic-coatings on Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on Zr (Zrconium-coated surface), Nb (Niobium-coated surface), and control (Uncoated Titanium) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the three dental substrate types. MG63 cells cultured on Zr, Nb and control exhibited cell-matrix interactions. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

Biological Effects of Different Thin Layer Hydroxyapatite Coatings on Anodized Titanium

  • Sohn, Sung-Hwa;Jun, Hye-Kyoung;Kim, Chang-Su;Kim, Ki-Nam;Ryu, Yeon-Mi;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Kim, Hye-Won;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.237-247
    • /
    • 2005
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of various thin layer hydroxyapatite (HA) coatings on anodized Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on A (100 nm HA coating on anodized surface), B (500-700 nm HA coating on anodized surface), C ($1{\mu}m$ HA coating on anodized surface), and control (non HA coating on anodized surface) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the four dental substrate types. MG63 cells cultured on A, C and control exhibited cell-matrix interactions. It was B surface showing cell-cell interaction. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Pressure Sensing Properties of AlN Thin Films Sputtered at Room Temperature

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Lee, Youn-Jin;Hong, Yeon-Woo;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.94-98
    • /
    • 2014
  • Aluminum nitride (AlN) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 25~75% $N_2$ /Ar. The characterization of film properties were performed using surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy(XPS), and pressure-voltage measurement system. The deposition rates of AlN films were decreased with increasing the $N_2$ concentration owing to lower mass of nitrogen ions than Ar. The as-deposited AlN films showed crystalline phase, and with increasing the $N_2$ concentration, the peak of AlN(100) plane and the crystallinity became weak. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. But in the case of 50% $N_2$ /Ar condition, the peak of (002) plane, which is determinant in pressure sensing properties, appeared. XPS depth profiling of AlN/TiN/SUS430 revealed Al/N ratio was close to stoichiometric value (45:47) when deposited under 50% $N_2/Ar$ atmosphere at room temperature. The output signal voltage of AlN sensor showed a linear behavior between 26~85 mV, and the pressure-sensing sensitivity was calculated as 7 mV/MPa.

Characterization of PMW-PZT Thick Films Prepared by Screen Printing Method (스크린 인쇄법에 의해 제조한 PMW-PZT 후막의 특성)

  • Son, Jin-Ho;Kim, Yong-Bum;Cheon, Chae-Il;Yoo, Kwang-Soo;Kim, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • PMW-PZT thick films of about $30{\mu}m$ thickness were fabricated on Pt/$TiO_2$/$SiN_x$Si substrate by the hybrid method of screen printing and PZT sol application. With the increase of the number of the sol application times, the sintered density and electrical properties of PMW-PZT thick films were evidently increased. For the PMW-PZT thick film with PZT sol application of 10-times, the dielectric constant ($\varepsilon_r$) was 745 at the frequency of 100 KHz and thepiezoelectric coefficient ($d_33$) was 155 pC/N at the applied pressure of 1 atm.

Analysis of structural properties of epitaxial BST thin films prepared by pulsed laser deposition (펄스형 레이저 증착법으로 제조된 에피탁시 BST 박막의 구조 분석)

  • 김상섭;제정호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.355-360
    • /
    • 1998
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$thin films of two different thickness (~250 $\AA$ and ~1340 $\AA$) on MgO(001) prepared by a pulsed laser deposition method were studied by synchroton x-ray scattering measurements. The film initially grew on MgO(001) with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became rough significantly, but the interface between the film and the substrate seemed to have changed little. In the early stage, the film was highly strained in a tetragonal structure with the longer axis parallel to the surface normal direction. As the growth proceeded further, it was mostly relaxed to a cubic structure with the lattice parameter of the bulk value and the mosaic distribution improved significantly in both in-plane and out-of-plane directions.

  • PDF

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Application of electron beam irradiation for studying the degradation of dye sensitized solar cells (전자선 조사를 통한 염료감응형 태양전지의 분해 연구)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF

High Speed Cu Filling Into TSV by Pulsed Current for 3 Dimensional Chip Stacking (3차원 실장용 TSV의 펄스전류 파형을 이용한 고속 Cu도금 충전)

  • Kim, In Rak;Park, Jun Kyu;Chu, Yong Cheol;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.667-673
    • /
    • 2010
  • Copper filling into TSV (through-silicon-via) and reduction of the filling time for the three dimensional chip stacking were investigated in this study. A Si wafer with straight vias - $30\;{\mu}m$ in diameter and $60\;{\mu}m$ in depth with $200\;{\mu}m$ pitch - where the vias were drilled by DRIE (Deep Reactive Ion Etching) process, was prepared as a substrate. $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to reduce the time required complete the Cu filling into the TSV, the PPR (periodic pulse reverse) wave current was applied to the cathode of a Si chip during electroplating, and the PR (pulse-reverse) wave current was also applied for a comparison. The experimental results showed 100% filling rate into the TSV in one hour was achieved by the PPR electroplating process. At the interface between the Cu filling and Ti/ Au functional layers, no defect, such as a void, was found. Meanwhile, the electroplating by the PR current showed maximum 43% filling ratio into the TSV in an hour. The applied PPR wave form was confirmed to be effective to fill the TSV in a short time.