Browse > Article
http://dx.doi.org/10.5573/JSTS.2008.8.1.066

A Materials Approach to Resistive Switching Memory Oxides  

Hasan, M. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Dong, R. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Lee, D.S. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Seong, D.J. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Choi, H.J. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Pyun, M.B. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Hwang, H. (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Publication Information
Abstract
Several oxides have recently been reported to have resistance-switching characteristics for nonvolatile memory (NVM) applications. Both binary and ternary oxides demonstrated great potential as resistive-switching memory elements. However, the switching mechanisms have not yet been clearly understood, and the uniformity and reproducibility of devices have not been sufficient for gigabit-NVM applications. The primary requirements for oxides in memory applications are scalability, fast switching speed, good memory retention, a reasonable resistive window, and constant working voltage. In this paper, we discuss several materials that are resistive-switching elements and also focus on their switching mechanisms. We evaluated non-stoichiometric polycrystalline oxides ($Nb_2O_5$, and $ZrO_x$) and subsequently the resistive switching of $Cu_xO$ and heavily Cu-doped $MoO_x$ film for their compatibility with modem transistor-process cycles. Single-crystalline Nb-doped $SrTiO_3$ (NbSTO) was also investigated, and we found a Pt/single-crystal NbSTO Schottky junction had excellent memory characteristics. Epitaxial NbSTO film was grown on an Si substrate using conducting TiN as a buffer layer to introduce single-crystal NbSTO into the CMOS process and preserve its excellent electrical characteristics.
Keywords
ReRAM switching; binary and ternary oxides; oxygen vacancy; crystallinity; stoichiometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Tokunaga, Y. Kaneko, J. P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 88, 223507 (2004)   DOI   ScienceOn
2 M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett., 92, 178302 (2004)
3 D. S. Lee, H. J. Choi, H. J. Sim, D. H. Choi, H. S. Hwang, M. J. Lee, S. Seo, and I. K. Yoo, IEEE Elec. Dev. Lett., 26, 719 (2005)   DOI   ScienceOn
4 D. S. Lee, D. J. Seong, H. J. Choi, I. H. Jo, R. Dong, W. F. Xiang, S. J. Oh, S. H. Heo, M. S. Jo, D. K. Hwang, H. K. Park, M. Chang, M. Hasan, and H. S. Hwang, IEDM Tech. Dig., p. 797 (2006)
5 S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett., 76, 2749 (2000)
6 A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, IEEE Elec. Dev. Lett., 17, 549 (1996)
7 N. Wakiya, N. Tajiri, T. Kiguchi, N. Mizutani, J. Cross, and K. Shinozaki, Jap. J. of Appl. Phys., 45, 8827 (2006)
8 T. Oka and N. Nagaosa, Phys. Rev. Lett., 95, 266403 (2005)
9 International Technology Roadmap for Semiconductors (ITRS, 2006), http://www.itrs.net/reports.html
10 R. Dong, Q. Wang, L. D. Chen, D. S. Shang, T. L. Chen, X. M. Li, and W. Q Zhang, Appl. Phys. Lett., 86, 172107 (2005)
11 S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fuji, K. Katayama, et al., IEEE Elec. Dev. Meet. 2007, pp. 779-782
12 K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nat. Mater. 5,312 (2006)   DOI   ScienceOn
13 J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, J. Electrochem. Soc., 133, 1242 (1986)
14 S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett., 85, 5655 (2004)
15 T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Appl. Phys. Lett., 86, 012107 (2004)
16 S. T. Hsu, T. K. Li, and N. Awaya, J. Appl. Phys., 101, 024517 (2007)
17 W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K.Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, IEDM Tech. Dig., p.193 (2002)
18 A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. D. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, IEDM Tech. Dig., p. 765 (2005)
19 M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. 19, 2232 (2007)
20 Y. Kozuka, T. Susaki, and H. Y. Hwang, Appl. Phys. Lett., 88, 142111 (2006)
21 A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Appl. Phys. Lett., 83, 957 (2003)   DOI   ScienceOn
22 A. Beck, J. G. Bednorz, C. Gerber, Ch. Rossel, and D. Widmer, Appl. Phys. Lett., 77, 139 (2000)   DOI   ScienceOn
23 A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 85, 4073 (2004)   DOI   ScienceOn
24 A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, and H. Adachi, Phys. Rev. B 70, 224403 (2004)
25 D. H. Choi, D. S. Lee, H. J. Sim, M. Chang, and H. S. Hwang, Appl. Phys. Lett. 88, 082904 (2006)
26 H. J. Sim, H. J. Choi, D. S. Lee, M. Chang, D. H. Choi, Y. N. Son, E. H. Lee, W. J. Kim, Y. D. Park, I. K. Yoo, and H. S. Hwang, IEDM Tech. Dig., p. 587 (2005)