• Title/Summary/Keyword: Ti scaffold

Search Result 9, Processing Time 0.025 seconds

Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold (PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가)

  • Kim, Jung-Ho;Lee, Ok Joo;Sheikh, Faheem A.;Ju, Hyung Woo;Moon, Bo Mi;Park, Hyun Jung;Park, Chan Hum
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.150-155
    • /
    • 2014
  • Polycaprolactone (PCL) is a synthetic biodegradable polymer with excellent mechanical properties. $TiO_2$ (titanium dioxide) has a hydrophilic, high density and excellent biocompatibility. In this work, we produced three-dimensional porous scaffolds with PCL and $TiO_2$ nanoparticles using a salt-leaching method. Physical properties of the scaffolds were analyzed by FE-SEM, FTIR, TGA and compressive strength. Interestingly, the addition of $TiO_2$ nanoparticles decreased the water absorption and swelling ratio of the porous scaffolds. However, the compressive strength was increased by $TiO_2$. CCK-8 assay, which is generally used for the analysis of cell growth, shows that $TiO_2$ nanoparticles have no cytotoxicity. Taken together, we suggest that the PLC/$TiO_2$-scaffold can be used for biomedical applications.

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment (다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가)

  • An, Sang-Hyun;Kim, Seung-Eon;Kim, Kyo-Han;Yun, Hui-Suk;Hyun, Yong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

The Fabrication and Characteristics of Dye-sensitized Solar Cells (DSSCs) Using the Patterned TiO2 Films

  • Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.445.1-445.1
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple structure and low manufacturing cost. The $TiO_2$ film with thickness of $8{\sim}10{\mu}m$, which consists of nanoparticles, acts as both a scaffold with a high surface-to-volume ratio for the dye loading and a pathway to remove the electrons. However, charge carriers have to move across many particle boundaries by a hopping mechanism. So, one dimensional nanostructures such as nanotubes, nanorods and nanowires should improve charge carrier transportation by providing a facile direct electron pathway and lowering the diffusion resistance. However, the efficiencies of DSSCs using one dimensional nanostructures are less than the $TiO_2$ nanoparticle-based DSSCs. In this work, the patterned $TiO_2$ film with thickness of $3{\mu}m$ was deposited using photolithography process to decrease of electron pathway and increase of surface area and transmittance of $TiO_2$ films. Properties of the patterned $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

Thin Micro-Porous Scaffold Layer on Metallic Substrate (금속기질에 앓은 마이크로 다공질 스케폴드 코팅에 관한 연구)

  • Sin, D.C.;Miao, X.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.41-47
    • /
    • 2010
  • 티타늄과 티타늄 합금은 재료적 특이성 때문에 심장 혈관 임플란트에서 일반적으로 사용되어 왔다. 일찍이 적용된 예로는 인공심장판막, 심박조율기의 보호케이스, 혈액 순환 장치 등이 있다. 하지만 물질유도혈전증(Material-induced thrombosis)은 혈전폐색에 의해 기인한 기능 손실로 심장혈관 임플란트 장치의 주된 합병증으로 존재하고 있으며, 심장혈관 임플란트의 혈전유전자는 심장혈관장치의 발달에 주된 난관 중 하나로 남아있다. 그리고 텍스처 혈액 접합 물질(Textured blood-contacting material)은 1960년대 초반 이후부터 혈액순환 보조 장치의 임상실험에 사용되고 있다. 접합 물질에 내장된 텍스처 섬유조직 표면은 형성, 성장, 안정적 부착, 생물학적 내벽(neointimal layer) 등 유도 혈액(entrapping blood) 성분에 의해 형성된다. 공동(cavity) 형상의 용해 가능한 미립자를 사용하는 SCPL법(Solvent casting/particulate leaching method)은 티타늄 기질 이전에 형성된 폴리우레탄 위에 텍스처(texture)를 생성하기 위해 사용되었다. 또한 콜라겐의 부동화(不動化)에 의한 공동(cavity)은 혈액 접합면에 잔존하기 위한 내피세포를 고정할 수 있는 효과가 있다. cpTi로 층화된 PU 기소공성(microporous)은 구조적 특성과 혈전증 감소를 위한 생물학적 내벽 사용의 잠재성을 평가하기 위한 세포 공동체 실험을 통해서 평가되었다.

Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells (La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성)

  • Hwang, Kuk-Jin;Kim, Min Kyu;Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.