• Title/Summary/Keyword: Ti 전극

Search Result 650, Processing Time 0.028 seconds

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Fabrication of TiO2 thin films for perovskite solar cell using RF magnetron sputter

  • Cho, Kyungjin;Lee, Seunghun;Kim, Seongtak;Chung, Teawon;Lee, Sang-won;Kim, Soo Min;Park, Hyomin;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.1-305.1
    • /
    • 2016
  • 페로브스카이트 태양전지는 차세대 태양전지로써 몇 년 사이에 매우 큰 폭으로 효율이 증가하고 있으며 활발한 연구가 진행되고 있다. 페로브스카이트의 태양전지의 구조는 전자전도체, 페로브스카이트 광흡수체, 정공전도체, 전극으로 구성된다. 전자전도체는 전자 포집성이 우수한 다공성 TiO2 층과 TiO2 박막 층으로 구성된다. 균일한 박막 TiO2를 형성하는 것은 페로브스카이트 태양전지의 개방전압 특성에 기여한다. TiO2 박막을 제조하는 방법으로써 용액을 사용한 스핀 코팅 법은 간편하게 제조가 가능하나, 일정한 두께의 박막을 형성하지 못하고 균일하지 못하는 단점을 가진다. 본 연구에서는 RF 마그네트론 스퍼터를 이용하여 보다 균일한 TiO2 박막을 제조하였다. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Light IV, Quantum Efficiency (QE)로 분석하였다. 이를 통하여 제조방법 차이에 따른 페로브스카이트 태양전지의 영향을 분석하였다.

  • PDF

The Effects of Ag Addition on the Electrode Properties of Hydrogen Storage Alloys (Zr계 수소저장합금의 전극특성에 미치는 은 첨가의 영향)

  • Noh, Hak;Jeong, So-yi;Choi, Seung-jun;Choi, Jeon;Seo, Chan-yeol;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.3
    • /
    • pp.137-141
    • /
    • 1997
  • The effects of Ag addition to Zr-based hydrogen storage alloys ($Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$, $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ and $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$) on the electrode properties were examined. Ag-free and Ag-added Ze-based alloys were prepared by arc melting, crushed mechanically, and subjected to the electrochemical measurement. In $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy, 0.08 wt% Ag addition to the alloy improved the activation rate. Also Ag addition improved both activation property and discharge capacity in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$. For these Ag-added alloys, discharge capacities with the change of charge-discharge current density(10mA, 15mA and 30mA) are almost constant. Showing very high rate capability, discharge capacity of $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$ alloy increased by Ag addition to the alloy. When the amount of Ag addition in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy increased too much, the electrode properties became worse. Unveiling mechanism of effect of Ag addition is now progressing in our laboratory.

  • PDF

A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer (비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구)

  • Ha, Jeongho;Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.128-134
    • /
    • 2012
  • The performance evaluation and fabrication of integrated-optic electric-field sensor utilizing $Ti:LiNbO_3$ asymmetric Mach-Zehnder intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1\;mm$ and operates at a wavelength $1.3{\mu}m$. The devices are simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides. The minimum detectable electric field is 1.02 V/m and 6.91 V/m, corresponding to a dynamic range of ~35 dB and ~10 dB at the frequencies of 500 KHz and 5 MHz, respectively.

Comparison of Electrical Properties and AFM Images of DSSCs with Various Sintering Temperature of TiO2 Electrodes (TiO2 전극의 소결 온도에 따른 DSSCs의 전기적 특성 및 AFM 형상 비교)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Lee, Won-Jae;Koo, Bo-Kun;Song, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature$(350\;to\;550^{\circ}C)$. $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSSCs were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). Below sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively lower due to lower open circuit voltage. Oppositely, above sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively higher due to higher open circuit voltage. In both cases, lower fill factor (FF) was observed. However, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSSCs were mutually complementary, enhancing highest fill factor and efficiency. Such results can be explained in comparison of surface morphology with schematic diagram of energy states on the $TiO_2$ electrode surface. Consequently, it was considered that optimum sintering temperature of a-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

Ferroelectric BiFeO3-coated TiO2 Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells (강유전체 BiFeO3가 증착된 TiO2 전극을 이용한 염료감응형 태양전지의 효율 향상)

  • Joo, Ho-Yong;Hong, Su Bong;Lee, Hosang;Jeon, Ji Hoon;Park, Bae Ho;Hong, Sung Chul;Choi, Taekjib
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.198-203
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) based on titanium dioxide ($TiO_2$) have been extensively studied because of their promising low-cost alternatives to conventional semiconductor based solar cells. DSSCs consist of molecular dye at the interface between a liquid electrolyte and a mesoporous wide-bandgap semiconductor oxide. Most efforts for high conversion efficiencies have focused on dye and liquid electrolytes. However, interface engineering between dye and electrode is also important to reduce recombination and improve efficiency. In this work, for interface engineering, we deposited semiconducting ferroelectric $BiFeO_3$ with bandgap of 2.8 eV on $TiO_2$ nanoparticles and nanotubes. Photovoltaic properties of DSSCs were characterized as a function of thickness of $BiFeO_3$. We showed that ferroelectric $BiFeO_3$-coated $TiO_2$ electrodes enable to increase overall efficiency of DSSCs, which was associated with efficient electron transport due to internal electric field originating from electric polarization. It was suggested that engineering the dye-$TiO_2$ interface using ferroelectric materials as inorganic modifiers can be key parameter for enhanced photovoltaic performance of the cell.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

Characteristics of ZnO:Al thin films deposited with differentworking pressures (증착 압력에 따른 ZnO:Al 박막의 특성)

  • Kim, Seong-Yeon;Sin, Beom-Gi;Kim, Du-Su;Choe, Yun-Seong;Park, Gang-Il;An, Gyeong-Jun;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.49.2-49.2
    • /
    • 2009
  • 투명전극은 디스플레이, 태양전지와 같은 광전자 소자에 필수적이며, 지금까지 개발된 재료 중에는 ITO가 가장 투명하면서 전기전도도가 높고 생산성도 좋기 때문에 투명전극의 재료로 사용하고 있다. ITO는 낮은 비저항(${\sim}10^{-4}{\Omega}cm$) 과 높은 투과율 (~85 %), 상대적으로 넓은 밴드갭 에너지 (3.5 eV) 의특성과 같이 뛰어난 전기적 광학적 특성에 반해서 높은 원자재 가격, 불안정한 공급량 등으로 인한 문제점이꾸준히 제기되고 있다. 따라서 $In_2O_3$:Sn, ZnO:Al, ZnO:Ga, ZnO:F, ZnO:B, TiN 등과 같은 물질들로대체하려는 연구가 활발하게 진행되고 있다. ZnO는 ITO보다원자재의 수급이 원활하기 때문에 원가가 낮으며, 상대적으로 낮은 온도에서도 제작이 가능하다. 또한 화학적으로 안정적이므로 ZnO에 Al, Ga 등의 3족 원소를 도핑함으로써 낮은 비저항의 박막 제작이 가능하고, ITO 박막과 비교하여 etching이 쉬우며 기판과의 접착성이 좋으며, sputtering 공정시 plasma 분위기에서의 안정성이 뛰어나고 박막증착율이 높기 때문에 투명전극으로 적합한 재료이다. 본 연구에서는 cylindrical type의 Aldoping된 ZnO single target을 사용하여 박막 증착 압력의 변화를 주어 유리기판 위에 DC sputtering을 하였다. Fieldemission scanning electron microscope (FESEM)을 통해 ZnO:Al 박막의 표면의 형상과 두께를 확인하였으며, X-ray diffraction (XRD) 분석을 통해 박막의 결정학적 특성을 관찰하였다. 투명전극용 물질로서 ZnO:Al 박막의 적합성 여부를 확인하기 위하여 Van der Pauw 방법을 이용하여 박막의 비저항, 전자 이동도, 캐리어 농도를 측정하였으며, 박막의 기계적 성질 및 표면 접착성을 확인하기 위하여 nano-indentaion 분석을 하였다. 또한 UV-vis spectrophotometer를 이용하여 ZnO:Al 박막의 투과율을 분석하여 투명전극으로의 응용 가능성을 확인하였다.

  • PDF

Effect of Thermally Grown TiO2 Interlayer on Chlorine Evolution Efficiency and Durability of Ti/RuO2-PdO-TiO2 Electrodes (열산화법으로 생성된 TiO2 중간보호층이 Ti/RuO2-PdO-TiO2전극의 염소발생 효율 및 내구성에 미치는 영향)

  • Park, Da Jung;Choi, Sung Mook;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • Not only efficiency of chlorine evolution reaction (CER) but also durability namely service life is very important property in dimensional stable anode for Ballast Water Management System (BWMS) for marine ships. Many researchers have been focused on improving efficiency of CER by controlling composition, phase and surface area for a long time, but the efforts to increase durability was relatively small. In this study, we have investigated the effect of $TiO_2$ protective interlayers on efficiency and durability of DSA electrodes. $TiO_2$ protective interlayers were prepared by thermal oxidation at 500, 600 and $700^{\circ}C$ on Ti substrate. And then the DSA electrodes consisting of $Ti/RuO_2-PdO-TiO_2$ were prepared by thermal decomposition method on $TiO_2$ interlayers. The efficiencies of CER of DSA electrodes without $TiO_2$ interlayer and with $TiO_2$ interlayer grown at 500, 600 and $700^{\circ}C$ were 94.19, 94.45, 84.60 and 76.75% respectively. On the otherhand, durabilities were 30, 55, 90 and 65 hours respectively. In terms of industrial aspect, the performance of DSA is considered high efficiency and durability which can correspond to total production of chlorine. If we considered the performance index of DSA as the product of efficiency and durability, performance indices could be recalculated as 28.26, 50.85, 76.14 and 49.89 respectively. As the thermal oxidation temperature increasing, life time were increased remarkerbly, while efficiency of CER was decreased slightly. As a result, DSA electrode with $TiO_2$ interlayer grown at $600^{\circ}C$ has shown about 2.7 times performace of original DSA electrode without $TiO_2$ interlayer.

The microstructure evolution and the efficiency of DSSC Counter Electrode with MWCNT addition (카본나노튜브 분산도에 따른 DSSC 상대전극 미세구조와 효율 변화)

  • Yu, Byung-Kwan;Han, Jeung-Jo;Noh, Yun-Young;Jang, Hyun-Chul;Sok, Jung-Hyun;Song, Oh-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.836-839
    • /
    • 2011
  • 염료감응형 태양전지의 상대전극으로 MWCNT(multi-walled carbon nanotube)의 농도 (0.01~0.06g)를 달리하여 FTO(fluorine-doped tin oxide) glass에 분산시켜 상대전극을 만들었다. 그리고 glass/FTO/$TiO_2$/Dye(N719)/electrolyte(C6DMII,GSCN)/MWCNT/FTO/glass 구조를 가진 0.45$cm^2$급 DSSC(dye-sensitized solar cells) 소자를 만들었다. 소자의 미세구조, 분산정도, 광특성은 각각 광학현미경, SEM, source measure unit (Keithley model 2400) 장비를 이용하여 확인하였다. MWCNT 농도 증가와 FTO의 거친 표면형상에 따라 비선형적으로 MWCNT 분산면적이 증가하였고, MWCNT 농도 0.06g일 때 FTO 표면에 전체적으로 MWCNT가 완전히 분산됨을 확인하였다. 소자의 광변환 효율은 MWCNT 분산면적에 비례하는 효율을 보였고, MWCNT 분산농도인 0.06g 일 때 4.49%의 광변환 효율을 얻을 수 있었다.

  • PDF