• Title/Summary/Keyword: Ti$_3$SiC$_2$

Search Result 885, Processing Time 0.03 seconds

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Mechanical Propertis and Contact Damage Behavior of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 기계적 성질 및 접촉 손상 거동)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.333-338
    • /
    • 1998
  • Mechanical properties of polycrystalline{{{{ {Ti }_{3 }{SiC}_{2 } }} were investigated. Hertzian indentation test using a spher-ical indenter was used to study elastic and plastic behavior in{{{{ {Ti }_{3 }{SiC}_{2 } }} A high ratio of hardness to elastic mo-dulus indicated that mechanical properties of{{{{ {Ti }_{3 }{SiC}_{2 } }} are somehow similar to those of metals. Indentation stress-strain curve deviated from an ideal elastic limit indicating exceptional plasticity in this material. De-formation zones were formed below the contact as well as around the contact area. Intragrain slip would ac-count for high plasticity.

  • PDF

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal (천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성)

  • Shin, Yong-Deok;Oh, Sang-Soo;Jeon, Jae-Duck;Park, Young;Yim, Seung-Hyuk;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

Fabrication of SiC-TiC Composites via Mechanochemical Synthesis

  • Park, Heon-Jin;Lee, Ki-Min;Kim, Hyung-Jong;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.314-318
    • /
    • 2001
  • SiC-TiC composites have been fabricated by using a mechanochemical processing of a mixture of Si, Ti, and C at room temperature and subsequent hot pressing. TiC powders have been obtained by the mechanochemical processing of a mixture of Ti and C whereas SiC powders has not been obtained from a mixture of Si and C. By using the exothermic reaction between Ti and C, SiC-TiC powder could be obtained from the mixture of Si, Ti, and C using the mechanochemical processing for more than 12h. The X-ray diffraction analysis has shown that the powder subjected to the mechanochemical processing consisted of the particles having crystallite size below 10nm. Fully densified SiC-TiC composites have been obtained by hot-pressing of the powder at 1850$\^{C}$ for 3h and it has shown comparable mechanical properties to those of the SiC-TiC composites prepared from the commercially available SiC and TiC powders. Flexural strength of 560 MPa and fracture toughness of 4.8 MP$.$am$\_$1/2/ have been shown for the SiC-TiC composites with composition corresponding to 0.75:0.25:1 mole ratio of Si:Ti:C.

  • PDF

Bending Strength of Crack Healed $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal

  • Park, Sung-Won;Kim, Mi-Kyung;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.166-168
    • /
    • 2006
  • $Si_3N_4/SiC$ composite ceramics was sintered in order to investigate their bending strength behavior after crack healing. $Y_2O_$ and $TiO_2$ power was added as sintering additives to enhance it's sintering property. A three-point bending specimen was cut out from sintered plates. About $100\;{\mu}m$ semi-circular surface cracks were made on the center of the tension surface of the three-point bending specimen using Vickers indenter. After the crack-healing processing from $500^{\circ}C$ to $1300^{\circ}C$, for 1 h, in air, the bending strength behavior of these crack-healed specimen coated with $SiO_2$ colloidal were determined systematically at room temperature. $Si_3N_4/SiC$ ceramics using additive powder ($Y_2O_3+TiO_2$) was superior to that of additive powder $Y_2O_3$. The additive powder $TiO_2$ exerted influence at growth of $Si_3N_4$. The optimum crack healing conditions coated $SiO_2$ colloidal were $1000^{\circ}C$ at $Si_3N_4/SiC$ using additive powder ($Y_2O_3+TiO_2$), and $1300^{\circ}C$ at $Si_3N_4/SiC$ using additive powder $Y_2O_3$.

  • PDF

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.