• Title/Summary/Keyword: Thrust Vector Control

Search Result 144, Processing Time 0.025 seconds

Design of the test facility for the supersonic thrust vectoring nozzle (초음속 추력편향 노즐 실험장치 설계)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.569-572
    • /
    • 2010
  • In order to study the performance characteristics of the thrust vector nozzle, the test facility and instrumentation system were designed. In this system, axial thrust, moment, exhaust gas velocity and pressure will be measured by using the scale down experimental model devices. The test facility are composed of high pressure air storage system, flow measuring and control system, test nozzle and thrust measurement system.

  • PDF

Design of Control Mixer for 40% Scaled Smart UAV (스마트무인기 축소모형의 조종면 혼합기 설계)

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.240-247
    • /
    • 2006
  • Tilt rotor aircraft is a multi-configuration airplane which has three independent flight modes; helicopter, conversion, and aiplane. The control surface mixer resign is reqctired to generate and distribute efficient control forces and moments in each flight mode. In the conversion mode, the thrust vector is changed from helicopter mode to airplane, therefore the thrust vector makes undesired forces and moments which affect on pitch, roll and yaw dynamics. This paper describes the design results of control surface mixer design which minimize the undesired forces and moments due to nacelles tilting angle change for 4O% scaled model.

  • PDF

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF

Development of the High-Accuracy Multi-Component Balance for Fluidic Thrust Vectoring Nozzle of UAV (UAV용 유체역학적 추력편향 노즐의 고 정확도 다분력 시험장치 개발)

  • Song, Myung-Jun;Chang, Hong-Been;Cho, Yong-Ho;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.142-149
    • /
    • 2013
  • The thrust vector control technique is essential for high maneuverability of unmanned aerial vehicles. In the present study, a multi-component balance was developed to quantitatively evaluate the thrust-vectoring performance of a supersonic rectangular nozzle based on the Coanda coflowing effect. Precise calibration and detailed data analysis were performed during the development. It was found that the cross-talk errors between load cells in the balance were less than 5%, and that the unwanted errors due to high-pressure supply tubes were almost negligible, which contributed to the high accuracy of the present balance design. Some preliminary test results of the thrust-vectoring performance of the present nozzle design were also obtained and analyzed.

Thrust Vectoring Control of Supersonic Jet Using Proportional Control Valves (비례제어밸브를 이용한 초음속 제트의 추력편향 제어)

  • Lee, MyungYeon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • An experimental study is performed to observe the characteristics of the thrust vectoring control (TVC) of the supersonic jet using proportional control valves. It is observed that three different TVC characteristics exist as the nozzle pressure ratio varies. Strong hysteresis phenomena are also observed during the valve control for a certain range of the nozzle pressure ratio. It is also noticed that the secondary chamber pressure is one of the influencing parameters for the TVC. Therefore, a control algorithm utilizing the secondary chamber pressure coefficient as a predictor is applied to achieve the stable TVC avoiding the hysteresis. Consequently, the stable TVC with the maximum deflection angle of about 20-degree has been realized using the proportional control valves.

LIM Vector Control for Magnetic Levitation Considering Normal Force (수직력을 고려한 자기부상열차의 LIM 벡터제어기법)

  • Song, Woo-Hyun;Yoo, Sung-Hwan;Kim, Jun-Seok;Lim, Jae-Won;Park, Doh-young
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.177-178
    • /
    • 2013
  • To implement servo system using LIM, thrust and normal force control must be made in a moment. Thus, vector control is required to control magnetic flux and toque. In this paper, we applied to constant slip frequency vector control method by controlling d-q axis current and presented various simulation results.

  • PDF

A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control (동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구)

  • Lee, Hee-Joong;Kang, E-Sok;Song, Ohseop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.328-341
    • /
    • 2017
  • In the control actuator system of a launch vehicle based on thrust vectoring, the interaction between electro-mechanical position servo and inertial load are combined with the dynamic characteristics of the flexible vehicle support to generate synthetic resonance. This occurred resonance is fed back to the attitude control system and can influence stability of launch vehicle. In this study, we proposed a simulation model to analyze synthetic resonance of electro-mechanical actuation system for thrust vector control and explained the results of simulation and test using dynamic force feedback control which improves dynamic characteristics of servo actuation system by reducing synthetic resonance.

The Design of The Bell-Shaped Nozzle for The Maximum Thrust (추력 극대화를 위한 벨형 노즐 설계)

  • Kim Min-Chul;Park Soon-Ho;Lee Gui-Hwan;Lee Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.487-490
    • /
    • 2005
  • The thrust Control in Solid Propellant Rocket is incomparably limited than that in Liquid Propellant Rocket. Because it is fixed that section to relate a combustion, that is a natural result. The control of a thrust directions in a Solid Propellant Rocket is not efficient for the purpose of a Solid Propellant Rocket. But it is a problem to solve that a weight on board should increase through the maximization of the thrust in a Solid Propellant Rocket.

  • PDF

Effects of Open Area Ratio of Secondary Injection Flow Valve on Thrust, Side Thrust and Roll Moment of Solid Rocket Motor (2차분사 유량 조절 밸브 개도가 고체 로켓 모터의 추력, 측추력 및 롤 모멘트에 미치는 영향)

  • Kim, Sang-Min;Hwang, Yong-Sok;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.225-229
    • /
    • 2012
  • 대기가 희박한 고고도 환령이나 급격한 선회를 위해 2차분사에 의한 추력벡터제어를 사용한다. 8개의 2차분사구를 갖는 고체로켓모터를 대상으로, 2차분사의 유량을 조절하는 밸브의 개도가 추력, 측추력 및 롤 모멘트에 미치는 영향을 해석적으로 연구하였다. 정상 상태의 3차원 Reynolds Averaged Navier-Stokes 식의 해를 구하였으며, 난류를 위해 Spalart-Almaras 모델을 사용하였다. 수치해석의 타당성을 평가하기 위해 실험 결과와 해석결과를 비교하였다. 밸브의 개도가 증가함에 따라 추력은 감소하나 측추력은 증가한다. 반면, 롤 모멘트의 경우, 밸브와 2차분사 파이프의 상호작용에 의해 개도에 비례하지 않는다.

  • PDF

Prediction of the Thrust Center Movement Due To Rocket Nozzle Deflection (로켓 노즐 변위에 따른 추력 중심 변화 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.136-145
    • /
    • 2007
  • A computation was made to predict the movement of the thrust center position due to the rocket nozzle deflection. Three dimensional computations were done for the nozzle deflection angles of 0/1/3 degrees, and the oscillation of aerodynamic coefficients, not observed for the axisymmetric cases, was encountered. The position of the thrust center was found to be at -16 mm and -4 mm for the deflection angles of 1 and 3 degrees, respectively, and it can be concluded that the thrust center movement due to nozzle deflection is negligible. In addition to the computational results, the mechanism of thrust generation in a rocket engine is described with a brief mathematical derivation as it is sometimes mistaken. Also presented are some descriptions on the problem of pressure center definition for symmetric cases such as a rocket external flow problem and the nozzle deflection case.

  • PDF