• Title/Summary/Keyword: Thrust Controller

Search Result 101, Processing Time 0.03 seconds

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory (퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구)

  • Jeon, Ma-Ro;Kim, Hee-Su;Kim, Jae-Hak;Kim, Su-Jeong;Song, Soon-Seok;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

A Design of Optimal Controller with Friction Reduction of Linear Motor-based Transfer Technology via Lift-force Control (부상력을 이용한 LMTT(Linear Motor-based Transfer Technology) 의 마찰력 감소에 대한 최적 제어기 설계)

  • Seo, Jung-Hyun;Lee, Jin-Woo;Han, Seong-Hun;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1856-1857
    • /
    • 2006
  • The existing automation transfer systems such as AGV(Automated Guided Vehicle) have many problems (maintenance, accuracy, velocity, etc.) and wastes of a vast space and time. Hence we have suggested to LMTT(Linear Motor-based Transfer Technology). This paper deals with fundamental LMTT, and proposes a concept of mass reduction and propulsion control for LMTT when it is starting and reaching an object by using lift-force. By applying optimal controller and the repulsive lift forte in the LMTT, a large percent of vehicle weight is compensated and it reduces friction, then it needs less thrust force to propel the vehicle.

  • PDF

Optimal Guidance and Nonlinear Tracking Control for a Lunar Lander

  • Hwang, Myung-Shin;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.2-167
    • /
    • 2001
  • This paper presents guidance and control laws which guarantee a minimum fuel consumption and have obustness against various disturbances during a terminal-landing phase on the lunar surface. The nonlinear robust tracking control system is designed to track the reference profiles, which are expressed by exponential functions. An adjustment law in the tracking controller is given in the form of the differential equations with respect to the controller´s variable gains. Computer simulations are performed to examine the tracking accuracy, the robustness in a thrust failure mode, and the vertical soft landing at a pre-assigned point on the lunar surface. The results of numerical simulation show the effectiveness of the present control law.

  • PDF

Feature Based Tool Path Planning and Modification for STEP-NC (STEP-NC의 피쳐 기반 공구경로 생성 및 갱신)

  • 조정훈;서석환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.295-311
    • /
    • 1999
  • An increasing attention is paid to STEP-NC, the next generation CNC controller interfacing STEP-compatible data. In this paper, we first propose an Architecture for the STEP-NC (called FBCC: Feature Baled CNC Controller) accepting feature code compatible with STEP-data, and executing NC motion feature by feature while monitoring the execution status. The main thrust of the paper has been to develop an automatic on-line tool path generation and modification scheme for milling operation. The tool path it generated iota each feature by decomposing into a finite number of primitive features. The key function in the new scheme is haw to accommodate unexpected execution results. In our scheme, the too1 path plinker is designed to have a tracing capability iota the tool path execution so that a new path can be generated from the point where the operation is stopped. An illustrative example is included to show the capability of the developed algorithm.

  • PDF

Constant Altitude Flight Control for Quadrotor UAVs with Dynamic Feedforward Compensation

  • Razinkova, Anastasia;Kang, Byung-Jun;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • This study addresses the control problem of an unmanned aerial vehicle (UAV) during the transition period when the flying mode changes from hovering to translational motion in the horizontal plane. First, we introduce a compensation algorithm that improves height stabilization and reduces altitude drop. The main principle is to incorporate pitch and roll measurements into the feedforward term of the altitude controller to provide a larger thrust force. To further improve altitude control, we propose the fuzzy logic controller that improves system behavior. Simulation results presented in the paper highlight the effectiveness of the proposed controllers.

Robust Path Tracking Control for Autonomous Underwater Vehicle with Variable Speed (변속 무인 수중 잠수정을 위한 강인 경로 추적 제어)

  • Choi, Yoon-Ho;Kim, Kyoung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.476-482
    • /
    • 2010
  • In this paper, we propose a robust path tracking control method for autonomous underwater vehicle with variable speed. The proposed path tracking controller consists of a kinematic controller and a dynamic controller. First, the kinematic controller computes the surge speed and yaw rate to follow the reference path with variable speed. Then the dynamic controller controls the thrust force and yaw torque to move the AUV actually. In the dynamic control, we assume that the sway speed is a disturbance. In addition the dynamic controller is designed based on sliding mode conrol. We also demonstrate the stability of the proposed control method by Lyapunov stability theory. Finally, simulation results illustrate the performance of the proposed control method.

A Study on Automatic Control of Microtunneling System based on Fuzzy Controller (퍼지 제어기를 이용한 터널 굴진기의 자동제어에 관한 연구)

  • 도준형;한정수;강영훈;변증남;남장현;박태동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.103-112
    • /
    • 2004
  • In this paper, we propose the automatic control algorithm of torque/pipejacking thrust and slurry charging/discharging pressure in the microtunneling system to assist operators assuring the quality of microtunneling construction. To develop this algorithm, we analyze the microtunneling system which is manually controlled by expert and design fuzzy controller. warning system, and halt sensing system The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

Attitude Controller Design and Flight Test of KSR-III Sounding Rocket (KSR-III 과학로켓의 자세제어기 설계와 비행시험)

  • Roh, Woong-Rae;Cho, Hyun-Chul;Ahn, Jae-Myung;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.88-94
    • /
    • 2004
  • The KSR-III rocket is a liquid propellant sounding rocket and thrust vector control actuators and cold gas thrusters are used to control pitch and yaw, roll attitude respectively during thrusting phase. In this paper, the structure of designed attitude controller and gain scheduling, results of stability analysis for KSR-III rocket are presented. The attitude controller is implemented with flight software in the domestically developed INS and successfully performed its function in the flight test. The flight data are coincident with simulation results.

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.