• Title/Summary/Keyword: Thromboxane $A_2$ synthase

Search Result 25, Processing Time 0.024 seconds

Anti-platelet Effects of Dimethyl Sulfoxide via Down-regulation of COX-1 and $TXA_2$ Synthase Activity in Rat Platelets

  • Ro, Ju-Ye;Lee, Hui-Jin;Ryu, Jin-Hyeob;Park, Hwa-Jin;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • In this study, we investigated the effect of DMSO, a highly dipolar organic liquid, in collagen ($5{\mu}g/ml$)-stimulated platelet aggregation. DMSO inhibited platelet aggregation at 0.5% by inhibiting production of thromboxane $A_2$ ($TXA_2$) which was associated with blocking cyclooxygenase (COX)-1 activity and $TXA_2$ synthase. In addition, DMSO significantly increased the formation of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP) and cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). On the other hand, DMSO (0.1~0.5% concentration) did not affect the LDH release which indicates the cytotoxicity. Based on these results, DMSO has anti-platelet effect by regulation of several platelet signaling pathways, therefore we suggest that DMSO could be a novel strategy on many thrombotic disorders.

Inhibitory Effects of Total Saponin Korean Red Ginseng on Thromboxane A2 Production and P-Selectin Expression via Suppressing Mitogen-Activated Protein Kinases

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.310-320
    • /
    • 2017
  • Ginseng has been widely used for traditional medicine in eastern Asia and is known to have inhibitory effects on cardiovascular disease (CVD) such as thrombosis, atherosclerosis, and myocardial infarction. Because, platelet is a crucial mediator of CVD, many studies are focusing on inhibitory mechanism of platelet functions. Among platelet activating molecules, thromboxane $A_2$ ($TXA_2$) and P-selectin play a central role in CVD. $TXA_2$ leads to intracellular signaling cascades and P-selectin plays an important role in platelet-neutrophil and platelet-monocyte interactions leading to the inflammatory response. In this study, we investigated the inhibitory mechanisms of total saponin fraction from Korean red ginseng (KRG-TS) on $TXA_2$ production and P-selectin expression. Thrombin-elevated $TXA_2$ production and arachidonic acid release were decreased by KRG-TS dose (25 to $150{\mu}g/mL$)-dependently via down regulation of microsomal cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS) activity and dephosphorylation of cytosolic phospholipase $A_2$ ($cPLA_2$). In addition, KRG-TS suppressed thrombin-activated P-selectin expression, an indicator of granule release via dephosphorylation of mitogen-activated protein kinases (MAPK). Taken together, we revealed that KRG-TS is a beneficial novel compound inhibiting $TXA_2$ production and P-selectin expression, which may prevent platelet aggregation-mediated thrombotic disease.

Batch Chromatography Simulation of Tröger base by Aspen Chromatography (Aspen Chromatography에 의한 Tröger base의 회분식 크로마토그라피 전산모사)

  • Kim, Jung-Ae;Park, Moon-Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.615-619
    • /
    • 2009
  • (+)-$Tr{\ddot{o}}ger$'s base in $Tr{\ddot{o}}ger$'s base racemates that inhibits thromboxane A2($T{\times}A2$) synthase has been used to treat arteriosclerosis. Separation of (+)-$Tr{\ddot{o}}ger$'s base by chromatography has become a major concern. However separation experiments of (+)-$Tr{\ddot{o}}ger$'s base need time and consumables so that simulation with Aspen Chromatography could save time and costs by predicting the efficiency of separation. Injection amount and eluent flow rate were varied to compare the resolutions and yields of TB(-) and TB(+). Highest resolution and yield were attained at the eluent rate of 0.25 mL/min. Isotherms representing the relationship between mobile phase concentration and stationary phase concentration were changed to get the best separation with Ideal Adsorbed Solution(IAS) Statistical Lanmuir isotherms.

The inhibitory effects of glabridin on human platelet aggregation and thrombus formation

  • Sang-Nam Park;Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.455-461
    • /
    • 2023
  • Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and glabridin is a major chemical compound that is found in the root extract of Glycyrrhiza glabra. Glabridin is a natural compound known to have antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. In this study, we investigated if glabridin inhibited platelet aggregation and thrombus formation. We observed that glabridin inhibited collagen-induced platelet aggregation and suppressed signal transduction molecules such as phosphatidylinositol-3 kinase (PI3K), Akt, glycogen synthase kinase-3α/β (GSK-3α/β), SYK, cytosolic phospholipase A2, and p38 expression. In addition, glabridin suppressed thromboxane A2 generation and thrombin-induced clot retraction. Taken together, glabridin showed strong antiplatelet effects and may be used to block thrombosis- and platelet-mediated cardiovascular diseases.

Inhibitory effect of ethanol extract of Gryllus bimaculatus on platelet aggregation and glycoprotein IIb/IIIa activation (쌍별귀뚜라미 에탄올 추출물의 혈소판응집반응과 당단백질 IIb/IIIa 활성화 억제 효과)

  • Hyuk-Woo Kwon;Man Hee Rhee;Jung-Hae Shin
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.236-243
    • /
    • 2023
  • Platelets act a fundamental role in primary- and secondary-hemostasis, however, platelet activation may cause thrombosis simultaneously. Therefore, control of platelet aggregation is crucial in preventing thrombosis-mediated diseases. Recently, the development of insect materials is attracting attention. Among the highly nutritious functional food sources, insects such as two-spotted cricket (Gryllus bimaculatus). Gryllus bimaculatus (G. bimaculatus) contains high protein and unsaturated fatty acids and has been registered as a food material September 2015 by the Ministry of Food and Drug Safety of Korea. In this study, we examined whether G. bimaculatus extract (GBE) inhibits platelet aggregation, intracellular calcium mobilization, thromboxane A2 production and glycoprotein IIb/IIIa (integrin αIIb/β3) activation. We investigated whether GBE can regulate signaling molecules, such as 1, 4, 5-triphosphate receptor type I, extracellular signal-regulated kinase, cytosolic phospholipase A2, mitogen-activated protein kinases p38, vasodilator-stimulated phosphoprotein, phosphatidylinositol-3 kinase, Akt, glycogen synthase kinase-3α/β, and SYK. Taken together, GBE is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Nicotine in High Concentration Causes Contraction of Isolated Strips of Rabbit Corpus Cavernosum

  • Nguyen, Hoai Bac;Lee, Shin Young;Park, Soo Hyun;Han, Jun Hyun;Lee, Moo Yeol;Myung, Soon Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • It is well known that cigarette smoke can cause erectile dysfunction by affecting the penile vascular system. However, the exact effects of nicotine on the corpus cavernosum remains poorly understood. Nicotine has been reported to cause relaxation of the corpus cavernosum; it has also been reported to cause both contraction and relaxation. Therefore, high concentrations of nicotine were studied in strips from the rabbit corpus cavernosum to better understand its effects. The proximal penile corpus cavernosal strips from male rabbits weighing approximately 4 kg were used in organ bath studies. Nicotine in high concentrations ($10^{-5}{\sim}10^{-4}M$) produced dose-dependent contractions of the corpus cavernosal strips. The incubation with $10^{-5}M$ hexamethonium (nicotinic receptor antagonist) significantly inhibited the magnitude of the nicotine associated contractions. The nicotine-induced contractions were not only significantly inhibited by pretreatment with $10^{-5}M$ indomethacin (nonspecific cyclooxygenase inhibitor) and with $10^{-6}M$ NS-398 (selective cyclooxygenase inhibitor), but also with $10^{-6}M$ Y-27632 (Rho kinase inhibitor). Ozagrel (thromboxane $A_2$ synthase inhibitor) and SQ-29548 (highly selective TP receptor antagonist) pretreatments significantly reduced the nicotine-induced contractile amplitude of the strips. High concentrations of nicotine caused contraction of isolated rabbit corpus cavernosal strips. This contraction appeared to be mediated by activation of nicotinic receptors. Rho-kinase and cyclooxygenase pathways, especially cyclooxygenase-2 and thromboxane $A_2$, might play a pivotal role in the mechanism associated with nicotine-induced contraction of the rabbit corpus cavernosum.

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Ginsenosides-mediated Vascular Relaxation and Its Molecular Mechanisms (진세노사이드의 혈관확장작용과 분자기전)

  • Kim, Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.89-98
    • /
    • 2008
  • There are increasing evidences in the literatures on the potential role of ginsenosides in treating cardiovascular diseases. In this article, current information about ginsenosides-mediated vascular relaxation are reviewed. From the published studies using isolated organs, cell culture systems and animal models, ginsenosides are shown to relax blood vessels and improve blood flow through diverse mechanisms, including nitric oxide release by activating eNOS phosphorylation via PI3K/Akt and/or ERK1/2 pathways in endothelial cells, induction of inducible nitric oxide synthase through activation of NF-${\kappa}$B, reducing the intracelluar Ca$^{2+}$ levels by activating Ca$^{2+}$-activated K$^{+}$ channels in vascular smooth muscle cells and reducing platelet aggregation by decreasing thromboxane A$_2$ formation and intracelluar Ca$^{2+}$in platelets. In addition, the relevant clinical trials regarding the effects of ginsenosides on the cardiovascular disease are summarized, particulary focusing on managing hypertension and improving thrombotic disorders. Finally, antagonistic effects of ginsenosides on the prostaglandin H$_2$ receptor and scavenging effects on the generation of oxygen-derived free radicals in spontaneously hypertensive rats (SHR) are discussed.

The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 (PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과)

  • Kwon, Hyuk-Woo;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.99-107
    • /
    • 2017
  • A species of Cordyceps, an ingredient in Chinese traditional medicine well-known for its major component, cordycepin (3'-deoxyadenosine), has been known to have antiplatelet effects; however, its effects on regulation of phosphoprotein have not been fully elucidated. In this study, we investigated how cordycepin regulates the phosphoprotein, including phosphatidylinositol 3-kinase (PI3K)/Akt and p38, to inhibit platelet aggregation, which are concerned with fibrinogen binding to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}_3$) and granule secretion in platelets. Our finding suggests that cordycepin inhibits collagen-induced platelet aggregation with $261.1{\mu}M$ of $IC_{50}$ and also inhibits fibrinogen binding to ${\alpha}IIb/{\beta}_3$ by a suppression of PI3K/Akt phosphorylation in a dose dependent manner. In addition, cordycepin further showed to inhibit collagen-induced p38 phosphorylation, reducing granule secretion (i.e. ATP- and serotonin-release) and thromboxane $A_2$ ($TXA_2$) production without regulating cyclooxygenase-1 (COX-1) and thromboxane A synthase (TXAS) activities, as well as phospholipase $C-{\gamma}_2$ ($PLC-{\gamma}_2$) phosphorylation. In conclusion, these results demonstrate that cordycepin-mediated antiplatelet effects were due to the inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ via the suppression of PI3K/Akt phosphorylation and inhibition of granule secretion & $TXA_2$ production by suppressing p38 phosphorylation. These results strongly indicate that cordycepin might have therapeutic or preventive potential for platelet aggregation-mediated disorders, regulating the phosphoprotein, including PI3K/Akt and p38.

Anti-thrombic Properties of the Oriental Herbal Medicine, Daejowhan

  • Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1391-1398
    • /
    • 2005
  • The anti-thrombic properties of the oriental herbal medicine Daejowhan(DJW, 大造丸) which consists of 11 kinds of herbs (indicated as ratio) of Rehmanniae Radix 24%, Hominis Placenta 5%, Testudinis Carapax 9%, Eucommiae Cortex 9%, Asparagi Radix 9%, Phellodendri Cortex 9%, Achyranthis Radix 7%, Liriopis Tuber 7%, Angelicae Sinensis Radix 7%, Ginseng Radix 5% and Schizandrae Fructus 3% were investigated. The water extracts from DJW inhibited Platelet-activating factor(PAF) induced platelet aggregation. DJW was extracted with methanol and further fractionated by ethylacetate. A 70% methanol extract showed a strong inhibition against PAF-induced aggregation in vitro and in vivo assays. The ethylacetate soluble fraction was shown to have inhibitory effect on PAF-induced platelet aggregation in vitro assay. The ethylacetate soluble fraction specially protected against the lethality of PAF, while verapamil did not afford any protection. These results indicate that the water extracts and alcoholic-fractions inhibit the action of PAF in vivo by an antagonistic effect on PAF, so that it may be useful in treating disorders caused by PAF, such as acute allergy, inflammation, asthma, gastrointestinal ulceration, toxic shock and so forth. DJW was investigated regarding its assumed anti-thrombic action on human platelets which was deduced from its ability to suppress Arachidonic acid(AA)-induced aggregation, exocytosis of ATP, and inhibition of Cyclooxygenase(COX) and Thromboxane synthase(TXS) activity. The latter two effects were estimated from the generation of Prostaglandin $E_2(PGE_2)$ and Thromboxane $A_2(TXA_2)$ respectively. Exogenously applied AA ($100{\mu}mol/{\ell}$) provoked a $89\%$ aggregation of platelets, the release of 14 pmol ATP, and the formation of either 225 pg $TXA_2$ or 45 pg $PGE_2$, each parameter being related to 106 platelets. An application of DJW 5 min before AA dose-dependently diminished aggregation, ATP-release and the synthesis of $TXA_2$ and $PGE_2$ with $IC_{50}$ values of 74, 108, 65, $72{\mu}g/m{\ell}$, respectively. The similarity of the $IC_{50}$ values suggest an inhibition of COX by DJW as primary target, thus suppressing the generation of $TXA_2$ which induces aggregation of platelets and exocytosis of ATP by its binding on $TXA_2$-receptors.