DOI QR코드

DOI QR Code

The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38

PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과

  • Kwon, Hyuk-Woo (College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, Korea Nazarene University)
  • 권혁우 (경북대학교 수의학대학) ;
  • 이동하 (나사렛대학교 임상병리학과)
  • Received : 2017.04.07
  • Accepted : 2017.05.01
  • Published : 2017.06.30

Abstract

A species of Cordyceps, an ingredient in Chinese traditional medicine well-known for its major component, cordycepin (3'-deoxyadenosine), has been known to have antiplatelet effects; however, its effects on regulation of phosphoprotein have not been fully elucidated. In this study, we investigated how cordycepin regulates the phosphoprotein, including phosphatidylinositol 3-kinase (PI3K)/Akt and p38, to inhibit platelet aggregation, which are concerned with fibrinogen binding to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}_3$) and granule secretion in platelets. Our finding suggests that cordycepin inhibits collagen-induced platelet aggregation with $261.1{\mu}M$ of $IC_{50}$ and also inhibits fibrinogen binding to ${\alpha}IIb/{\beta}_3$ by a suppression of PI3K/Akt phosphorylation in a dose dependent manner. In addition, cordycepin further showed to inhibit collagen-induced p38 phosphorylation, reducing granule secretion (i.e. ATP- and serotonin-release) and thromboxane $A_2$ ($TXA_2$) production without regulating cyclooxygenase-1 (COX-1) and thromboxane A synthase (TXAS) activities, as well as phospholipase $C-{\gamma}_2$ ($PLC-{\gamma}_2$) phosphorylation. In conclusion, these results demonstrate that cordycepin-mediated antiplatelet effects were due to the inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ via the suppression of PI3K/Akt phosphorylation and inhibition of granule secretion & $TXA_2$ production by suppressing p38 phosphorylation. These results strongly indicate that cordycepin might have therapeutic or preventive potential for platelet aggregation-mediated disorders, regulating the phosphoprotein, including PI3K/Akt and p38.

진균 속에 속하는 종인 Cordyceps는 중국의 전통약제로서, 그 유효성분인 cordycepin이 혈소판 응집에 관여한다는 보고가 있지만 phosphoprotein 조절에 관련된 연구는 미흡하다. 본 연구에서는, cordycepin이 fibrinogen binding에 관여한다고 알려진 PI3k/Akt와 $TXA_2$ 분비 및 과립방출에 관여한다고 알려진 p38와 같은 phosphoprotein의 인산화를 어떻게 조절하며 혈소판응집을 억제시키는지 규명하고자 하였다. 그 결과, cordycepin가 $261.1{\mu}M$$IC_{50}$으로 collagen이 유도한 혈소판 응집을 강력하게 억제하였고, PI3K와 Akt의 인산화를 감소시키며 ${\alpha}IIb/{\beta}_3$에 대한 fibrinogen 결합을 농도의존적으로 억제하였다. 또한, cordycepin은 collagen이 촉진시킨 p38의 인산화를 억제함으로써, 과립방출의 지표인 ATP 과 serotonin의 방출을 억제하였고 COX-1과 TXAS의 활성 및 $PLC-{\gamma}_2$ 인산화에 대한 영향없이 $TXA_2$ 생성량을 감소시켰다. 따라서, cordycepin은 PI3K/Akt, p38와 같은 phosphoprotein의 인산화를 억제함으로써 혈소판 응집억제를 나타내는 항혈전 치료 및 예방약물로서 유용한 가치가 있다고 여겨진다.

Keywords

References

  1. Lee MR, Choi JH, Yang Y, Oh KS, Jeong TS, Lee CH, et al. Attenuation of Atherosclerosis by 3,4-Dihydroxy-Hydrocinnamic Acid in Rabbits by Partial Inhibition of ACAT. Korean J Clin Lab Sci. 2016;48(4):280-286. https://doi.org/10.15324/kjcls.2016.48.4.280
  2. Schwartz SM, Heinmark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990;70(4):1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177
  3. Payrastre B, Missy K, Trumel C, Bodin S, Plantavid M, Chap H. The integrin alpha IIb/beta 3 in human platelet signal transduction. Biochem Pharmacol. 2000;60(8):1069-1074. https://doi.org/10.1016/S0006-2952(00)00417-2
  4. Phillips DR, Nannizzi-Alaimo L, Prasad KS. Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost. 2001;86(1):246-258. https://doi.org/10.1055/s-0037-1616222
  5. Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc Res. 2009;82(2):261-271. https://doi.org/10.1093/cvr/cvn325
  6. Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol. 2009;103(3 Suppl):4-10.
  7. Sabatine MS, Jang IK. The use of glycoprotein IIb/IIIa inhibitors in patients with coronary artery disease. Am J Med. 2000;109(3):224-237. https://doi.org/10.1016/S0002-9343(00)00474-5
  8. Wonerow P, Obergfell A, Wilde JI, Bobe R, Asazuma N, Brdicka T, et al. Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets. Biochem J. 2002;364(3):755-765. https://doi.org/10.1042/bj20020128
  9. Quinton TM, Dean WL. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem Biophys Res Commun. 1992;184(2):893-899. https://doi.org/10.1016/0006-291X(92)90675-B
  10. Nishikawa M, Tanaka T, Hidaka H. $Ca^{2+}$-calmodulin dependent phosphorylation and platelet secretion. Nature. 1980;287(5785):863-865. https://doi.org/10.1038/287863a0
  11. Kaibuchi K, Sano K, Hoshijima M, Takai Y, Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium. 1982;3(4-5):323-335. https://doi.org/10.1016/0143-4160(82)90020-3
  12. Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975;72(8):2994-2998. https://doi.org/10.1073/pnas.72.8.2994
  13. Flevaris P, Li Z, Zhang G, Zheng Y, Liu J, Du X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood. 2009;113(4):893-901. https://doi.org/10.1182/blood-2008-05-155978
  14. Cunningham KG, Manson W, Spring FS, Hutchinson SA. Cordycepin: A metabolic product from cultures Cordyceps militaris Link. Part I. Isolation and characterization. Nature. 1950;166(4231):949
  15. Cho HJ, Cho JY, Rhee MH, Park HJ. Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur J Pharmacol 2007;558(1-3):43-51. https://doi.org/10.1016/j.ejphar.2006.11.073
  16. Lee DH, Kim HH, Lim DH, Kim JL, Park HJ. Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa. Biomol Ther (Seoul). 2015;23(1):60-70. https://doi.org/10.4062/biomolther.2014.086
  17. Lee DH, Kim HH, Cho HJ, Bae JS, Yu YB, Park HJ. Antiplatelet effects of caffeic acid due to Ca(2+) mobilization inhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J Atheroscler Thromb. 2014;21(1):23-37.
  18. Patrono C. Aspirin: new cardiovascular uses for an old drug. Am J Med. 2001;110(1A):62-65. https://doi.org/10.1016/S0002-9343(01)00750-1
  19. Cipollone F, Patrignani P, Greco A, Panara MR, Padovano R, Cuccurullo F, et al. Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation. 1997;96:1109-1116. https://doi.org/10.1161/01.CIR.96.4.1109
  20. Kwon HW, Shin JH, Cho HJ, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser(157)) and dephosphorylation of PI3K and Akt. J Ginseng Res. 2016;40(1):76-85. https://doi.org/10.1016/j.jgr.2015.05.004
  21. Lee DH, Kim YJ, Kim HH, Cho HJ, Ryu JH, Rhee MH, et al. Inhibitory effects of epigallocatechin-3-gallate on microsomal cyclooxygenase-1 activity in platelets. Biomol Ther (Seoul). 2013;21(1):54-59. https://doi.org/10.4062/biomolther.2012.075
  22. Cho HJ, Kang HJ, Kim YJ, Lee DH, Kwon HW, Kim YY, et al. Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul Fibrinolysis. 2012;23(7):629-635. https://doi.org/10.1097/MBC.0b013e3283570846
  23. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser(157) phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res. 2013;37(2):176-186. https://doi.org/10.5142/jgr.2013.37.176
  24. Chang MC, Wang TM, Yeung SY, Jeng PY, Liao CH, Lin TY, et al. Antiplatelet effect by p-cresol, a uremic and environmental toxicant, is related to inhibition of reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Atherosclerosis. 2011;219(2):559-565. https://doi.org/10.1016/j.atherosclerosis.2011.09.031

Cited by

  1. 버섯원물과 버섯 추출물 그리고 버섯 유래 화합물을 포함한 식품과 기능성식품 vol.15, pp.4, 2017, https://doi.org/10.14480/jm.2017.15.4.155
  2. Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation vol.51, pp.1, 2017, https://doi.org/10.15324/kjcls.2019.51.1.34
  3. Cisplatin의 난소암 세포 증식 억제에 관한 신호 전달 기전 vol.52, pp.1, 2017, https://doi.org/10.15324/kjcls.2020.52.1.62