• Title/Summary/Keyword: Threshold tracking

Search Result 116, Processing Time 0.025 seconds

A Study on Diagnosing Fouling of Heat Exchangers of a Hybrid Heat Pump (하이브리드 열펌프 열교환기 오염 진단 연구)

  • Shin, Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.240-246
    • /
    • 2014
  • A fault detector was developed for heat exchangers of a hybrid heat pump (HP) for household. The proposed detector can be applied directly to raw operating data. It is to monitor a tracking error between a measured saturation temperature and its state observer. The observer was estimated from a state-space model simulating dynamics of a heat exchanger. The real hybrid HP was substituted with a dynamic simulator that implemented two-phased heat transfer and was validated by experimental data. And artificial fault data were generated using the simulator. Diagnosing the data showed the following. The residual calculated from the state observer error shows a relatively robust consistency with respect fouling level. The fault detector is practically useful because it detects a threshold fouling beyond which the performance starts to deteriorate significantly.

Estimation of Radar Cross Section for a Swerving 1 Target

  • Jung, Young-Hun;Hong, Young-Ho
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.232-236
    • /
    • 2001
  • In this paper, we consider the problem of estimation of average radar cross section (RCS) for Swerling 1 fluctuation model, based on the maximum likelihood (ML) estimation method. In a mathematical development we take into account the event that target strength is lower than detection threshold, or the target is not detected. Our ML estimation for the SWR uses the score function that is the joint probability-pdf of the events and random variables. The solution to the ML estimation reduces to an expression in the from of a contraction mapping. The computational efficiency of the contraction mapping theorem is significant in computing the ML estimation as compared with other root-finding algorithms fur most radar tracking conditions.

  • PDF

Moving Object Detection and Tracking in Moving Picture Using Adaptive Thresholding (동영상에서의 적응적인 임계화를 통한 움직임 검출 및 추적)

  • 정미영;최석림
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.17-20
    • /
    • 2002
  • The methods that track and detect motion field based on image difference of successive images from camera can separate motion field and background effectively, but because of noise and background images getting proper difference images is hard to achieve. In this paper we propose a method that can improve difference image quality significantly. Three step process is used. At the first step, existence of motion field is determined, the second step is finding proper threshold value using 'Contrast Streching' technique which enables us to find proper motion field even in complex images. At last step, remaining noise is removed and motion field is determined.

  • PDF

3D Object tracking with reduced jittering (떨림 현상이 완화된 3차원 객체 추적)

  • Kang, Minseok;Park, Jungsik;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.185-188
    • /
    • 2015
  • 미리 저장된 객체의 3차원 특징점(Feature point) 좌표와 카메라 영상의 2차원 특징점 좌표를 매칭(Matching)하여 객체를 추적하는 방식의 경우, 카메라의 시점이 변할 때 특징점에서 발생되는 원근 효과(Perspective effect)가 반영되지 못하여 특징점 매칭 오류가 발생한다. 따라서 특징점에서 발생하는 원근 효과를 반영하여 정확한 카메라 포즈를 추정하기 위해 이전 프레임(Frame)의 카메라 포즈(Camera Pose)에 맞추어 텍스쳐가 포함 된 3차원 객체의 모델을 렌더링 하여 원근 효과를 적용한 후, 현재 카메라 영상과 특징점 매칭하여 프레임 사이의 카메라 움직임을 구하여 객체를 추적한다. 더 나아가 본 논문에서는 특징점 매칭에서 발생하는 작은 오류들로 인한 미세한 카메라 움직임은 2단계의 임계치(Threshold)를 적용하여 떨림 현상으로 간주하여 떨림 현상이 제거된 객체 추적을 수행한다. 매 프레임마다 카메라 포즈에 맞춘 추적 객체를 렌더링 하기 때문에 떨림 현상으로 간주되어 제거된 카메라 움직임은 누적되지 않고, 추적 오류도 발생시키지 않는다.

  • PDF

Adaptive threshold-based Skin segmentation and hand tracking for gesture recognition (제스처 인식을 위한 적응적 임계값 기반의 피부영역 분할 기법 및 추적)

  • Chae, Seung-Ho;Seo, Jong-Hoon;Han, Tack-Don
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.424-426
    • /
    • 2012
  • 본 논문에서는 컬러영상 기반에서 배경과 잡음에 강인한 적응적 임계값 기반의 피부영역 기법을 제안하고 이를 활용한 응용프로그램을 제안한다. 배경과 전경을 분리시키는 코드북 알고리즘을 사용하여 배경을 제거하고, 분리된 영역에서 매 프레임 임계값과 모션에 따른 화소값을 검사하여 피부영역의 임계값을 갱신한다. 결과적으로 조명과 배경에 강인한 피부 영역 검출이 가능하며 이를 응용하여 사용자 인터페이스에 적용이 가능하다.

Exploring Optimal Threshold of RGB Pixel Values to Extract Road Features from Google Earth (Google Earth에서 도로 추출을 위한 RGB 화소값 최적구간 추적)

  • Park, Jae-Young;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.66-75
    • /
    • 2010
  • The authors argues that the current road updating system based on traditional aerial photograph or multi-spectral satellite image appears to be non-user friendly due to lack of the frequent cartographic representation for the new construction sites. Google Earth are currently being emerged as one of important places to extract road features since the RGB satellite image with high multi-temporal resolution can be accessed freely over large areas. This paper is primarily intended to evaluate optimal threshold of RGB pixel values to extract road features from Google Earth. An empirical study for five experimental sites was conducted to confirm how a RGB picture provided Google Earth can be used to extact the road feature. The results indicate that optimal threshold of RGB pixel values to extract road features was identified as 126, 125, 127 for manual operation which corresponds to 25%, 30%, 19%. Also, it was found that display scale difference of Google Earth was not very influential in tracking required RGB pixel value. As a result the 61cm resolution of Quickbird RGB data has shown the potential to realistically identified the major type of road feature by large scale spatial precision while the typical algorithm revealed successfully the area-wide optimal threshold of RGB pixel for road appeared in the study area.

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data (소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선)

  • Young-Woo Ryu;Jeong-Goo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.225-233
    • /
    • 2024
  • Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.

The Lines Extraction and Analysis of The Palm using Morphological Information of The Hand and Contour Tracking Method (손의 형태학적 정보와 윤곽선 추적 기법을 이용한 손금 추출 및 분석)

  • Kim, Kwang-Baek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.243-248
    • /
    • 2011
  • In this paper, we propose a new method to extract palm lines and read it with simple techniques from one photo. We use morphological information and 8-directional contour tracking algorithm. From the digitalized image, we transform original RGB information to YCbCr color model which is less sensitive to the brightness information. The palm region is extracted by simple threshold as Y:65~255, Cb:25~255, Cr:130~255 of skin color. Noise removal process is then followed with morphological information of the palm such that the palm area has more than quarter of the pixels and the rate of width vs height is more than 2:1 and 8-directional contour tracking algorithm. Then, the stretching algorithm and Sobel mask are applied to extract edges. Another morphological information that the meaningful edges(palm lines) have between 10 and 20 pixels is used to exclude noise edges and boundary lines of the hand from block binarized image. Main palm lines are extracted then by labeling method. This algorithm is quite effective even reading the palm from a photographed by a mobile phone, which suggests that this method could be used in various applications.

A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation (실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법)

  • Kim, Woonggi;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper, we present a new method which efficiently estimates a face direction from a sequences of input video images in real time fashion. For this work, the proposed method performs detecting the facial region and major facial features such as both eyes, nose and mouth by using the Haar-like feature, which is relatively not sensitive against light variation, from the detected facial area. Then, it becomes able to track the feature points from every frame using optical flow in real time fashion, and determine the direction of the face based on the feature points tracked. Further, in order to prevent the erroneously recognizing the false positions of the facial features when if the coordinates of the features are lost during the tracking by using optical flow, the proposed method determines the validity of locations of the facial features using the template matching of detected facial features in real time. Depending on the correlation rate of re-considering the detection of the features by the template matching, the face direction estimation process is divided into detecting the facial features again or tracking features while determining the direction of the face. The template matching initially saves the location information of 4 facial features such as the left and right eye, the end of nose and mouse in facial feature detection phase and reevaluated these information when the similarity measure between the stored information and the traced facial information by optical flow is exceed a certain level of threshold by detecting the new facial features from the input image. The proposed approach automatically combines the phase of detecting facial features and the phase of tracking features reciprocally and enables to estimate face pose stably in a real-time fashion. From the experiment, we can prove that the proposed method efficiently estimates face direction.