Estimation of Radar Cross Section for a Swerling 1 Target
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Abstract

In this paper, we consider the problem of estimation
of average radar cross section (RCS) for Swerling 1
fluctuation model, based on the maximum likelihood
(ML) estimation method. In a mathematical development,
we take into account the event that target strength is
lower than detection threshold, or the target is not
detected. Our ML estimation for the SNR uses the score
function that is the joint probability-pdf of the cvents
and random variables. The solution to the ML estimation
reduces to an expression in the form of a contraction
mapping. The computational efficiency of the contraction
mapping theorem is significant in computing the ML
estimation as compared with other root-finding algorithms

for most radar tracking conditions.

L. Introduction

The radar cross section (RCS) of most complex
targets depends significantly on the target geometry and
the aspect angle of the target relative to the radarfl, 2].
As a target moves, the aspect angle and RCS change.
The fluctuation of RCS is described by a stochastic
process, that is, the RCS of a target is treated as a
random variable with a probability density function (pdf)
and a correlation furction in time. Often, the RCS
fluctuations are characterized as one of four Swerling
types depending on the pdf and the correlation function.
Moreover, the signal-to-noise ratio (SNR) or received
power of a target is proportional to the average RCS of
the target.

Recently, the problem of radar resource allocation has
been addressed by many authors[8, 9, 10]. van Keuk and
Blackman gave a pair of optimal prediction accuracy and

optimal SNR to minimize the radar resources required

for track maintenance for a phased array radar. Also,
Hong and Jung formulated the radar energy- optimal
problem into a nonlinear control problem and obtained a
pair of optimal sequences of track-update intervals and
SNRs for a Swerling 1 target. Blackman, et al. presented
the manner in which IMM/MHT tracking and data
association methods [ead to efficient agile beam radar
allocation. In literatures [8, 9, 10], SNR is one of the
control inputs in optimal resource allocation problem.
However, the quantity SNR or average RCS of the target
is not a known value practically. Therefore, estimation of
SNR using the informations extracted from received
signal strength is inevitable so as to control SNR of the
target under track.

Numerous data association and target-tracking
algorithms have been developed over last three decades[3,
4, 5, 6, 7], and most of them assumed that the target
SNR was already known. Accordingly, estimation of SNR
is required to ensure best performances of tracking and
data association. Techniques for estimating the SNR were
discussed by Blair and Brandt-Pearce[11]. They estimated
the SNRs of Swerling targets based on the Maximum
Likelihood (ML) method for discriminating between
different Swerling targets.

In this paper, we derive an expression for estimating
SNR for Swerling 1 target, taking into account the event
that target signal strength is lower than a pre-specified
detection threshold and, thus, the target is not detected.
Our ML estimation for the SNR uses the likelihood
function that is the joint probability-pdf of the events
and random variables{12]. The joint probability-pdf is
consisted of the probability of the events that the target
is not detected and the pdf of random variables that are
the normalized squares of received signal strength.
Unfortunately, the solution to the ML estimation cannot
be written in an analytic form. It has an expression in
the form of a contraction mapping. The efficiency of the
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contraction mapping theorem is significant in computing
the ML estimation for most radar tracking conditions[13].
We discuss about the conditions of convergence in
computing the ML estimation via contraction mapping
theorem. Also, we show the numerical examples for

various nominal SNRs.
II. Background

The received signals of the radar/sonar system,
corrupted by additive noise, are coherently integrated to
give the two orthogonal signal components
(A,+N;, A;+N,). A; and A, represent the
instantaneous in-phase and quadrature phase signal
amplitudes, respectively, with the signal energy

E[A%=EgR/2, i=1,2. Specifically we assume that
the signal amplitudes A, and A, are uncorrelated
Gaussian following a Swerling 1 fluctuation model. N,
and N, represent the receiver noise, respectively, with
E[NE1=Ng/2, i=1,2. The
quantity SNR is given by Eg/Np. Given that A;, N;
are Gaussian and mutually independent, the sums
A; + N; again are Gaussian[8, 9, 11]. The signal
amplitude A = (A? + AZ)Y? for Swerling 1 target is
Rayleigh distributed according to

the noise energy

2
RA) = AAgEXD[‘zﬁg ] A=0 )

where E[ A?] = 2A% = E. Because the RCS of the

target ¢ is 0.5A%, the RCS for Swerling type 1 is
exponential distributed, which yields

ﬂd)=—%—exp[——%~]. 020 )

where ¢ = E[o] = A? is referred to as the average
RCS of the target.

Within a range-Doppler cell, the detection of a
returned measurement will takes place when the observed
SNR (the square of the received signal amplitude) is
higher than a specified threshold. That is, we can express

the detection process as [8]

(A1+ N)DZ+ (A, + Np)?
Ne

in terms of an exponential random variable z. The
observed SNR or random variable z has distribution

_ 1 e
A2 = 1o g =~ Trawr | 220 @

where SNR = 242/Ng = 2 ¢/ Npg. The target detection
(3) defines the relationship between the probability of
detection (Pp), the false alarm probability (Pr), and
the quantity SNR for the target such that

Py= P}I(1+SNR). (5

Thus, the measurement due to the target has its strength
distribution

- 1 1 —— 2z
42 = 3= Trang =~ TTag |-
2> —InPp.  (6)

IIL. Estimation of SNR for Swerling 1 Target

L1 ML estimation

A common method for estimation of nonrandom
parameters is the maximum likelihood (ML) method. To
take into account the event that the target is not
detected, we uses the joint probability-pdf as the score
function. The joint probability-pdf is consisted of the
probability of the events that the target is not detected
and the pdf of the observed SNR. If observed SNR is
lower than the detection threshold, it can not be usable
to estimate the SNR, because it seems to be originated
from random clutter or false alarm. Thus, we can write
the probability of the event that the target is not detected
as following:

—InPr
P{ze[o,—lnPF]}=f0 A2) dz

=] - pyatsw ™

Suppose that /2 represents a discrete time index and
consider a case that M measurements of N observed
SNRs, 2¥={z;,i=1,...,N}, are lower than the
detection threshold. Let I, denote the time index set of
M observed SNRs which are lower than the detection

threshold. In this case, the joint probability-pdf of events
and random variables is defined as
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Ay = ﬁ[l Fr(ze) kg" P{z,[0,—InPrl]}. (8)

kely

Substituting (6) and (7) into (8), we can rewrite the

score function as follows:

S U U R 7S
Ay = .ﬁl Py 1+ SNR e"p[ 17 SMR ]

hely

x g (1 - P].l‘/(]+SNR))

S WS T L Y RS S 52
(PD 1+SNR | DT TYSNR £
x (1 — PYOSRM, ©)

The ML estimate of SNR is given by

SNR = arg max Ay = arg max Ay (10)

SNR SNR

To maximize the log score function, one sets its

derivative with respect to SNR to zero. Then SNR
satisfies

d
dSNRlnAN R~ SR 0. (1)

Thus, the ML estimate of the SNR is given by

_ 1
SNR= —1+InPr + (N=TD) gzk

kel
M pYa+sm

+ e e —aee— In P 12

(N-M) (1= pyo+smy nPr (12)

Note that the ML estimate of the SNR cannot have an

expression in an analytic form. We can represent the

equation (12) as SNR = g(Sﬁ). In order to obtain
the ML estimate of the SNR, we must solve the
nonlinear equation SNR = g(SNR). We solved the
nonlinear equation of (12) using the contraction mapping
theorem[13). The computational efficiency of the
contraction mapping is significant in computing the ML
estimation as compared with other root-finding algorithms.
The procedure of solving the nonlinear equation performs
the following steps:

STEP I: Set the initial value SNR to a proper
value SNR,

STEP 2: Set i=1

STEP 3: Set SNR;= g(SNR;_,)

STEP 4: 1f |SNR; — SNR;_,| < TOL, stop and
return  SNR = SNR;

otherwise, set 7= 7+ 1 and proceed to step 3

Note that the above iteration procedure is terminated less
than 8 iterations in most simulation situations if it

converges to global solution.

1.2 Convergency of ML estimation solution

In a previous section, we solved the nonlinear
equation using the contraction mapping theorem. As
shown in a previous section, g(S?W?) is a continuous
function. Also, g’ (SNR) exist on (—oo0,c0) and it is
a continuous function. If |g'(SNR)| is less than I, it
converges to an unique solution theoretically. That is, it
must satisfy the following inequality so as to guarantee
the convergence.

—m%?%f(mﬁ;)z <1 (13)

|g' (SNR)| =
where P, = PYU+S®_ Fig 1 shows the region of the
pair  (M/N, Pp) satisfying the condition (13). The
shaded region is for guaranteeing the convergence. From

Fig. 1, we know that the sufficient condition for the
convergence is M/N<0.5.

The reglon for urique sokution
Bt antinabubimidumngt

Fig. 1. The region for guaranteeing global convergence.
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Fig. 2. The probability of convergence.

Here, we can express the probability of convergence
P,.(Pp) as a function of Pp. First, the probability
that M measurements of N observed SNRs are lower
than the detection threshold for given Pp and N is
given by the binomial probability law:

P{M misses for given Pp and N}

= (ﬁ) (1— Pp)# =40 (13)

M/N must be less than 0.5 at most in order to
guarantee the convergence. Thus, the probability of
convergence P, (Pp) for given Pp and N can be

written as follows:

Pur(Pp) = P4 <0.5}

- M. ;ﬂ)s (ﬁ) (l—PD)MPBN_M) (14)
.—ﬁ g

Fig. 2. shows the probability of convergence Pl Pp)
as a function of P, for N=3,5,9,20,50. We obser-

ved that increasing the probability of detection leads to
the enhancement of convergence probability from Fig. 2.

IV. Numerical Examples

The estimation problem for a Swerling 1 target was
solved numerically for three nominal SNRs to examine

the performance of the proposed estimation algorithm.

We set Pp to 107° and set TOL used in contraction

mapping theorem to 1072, If it does not satisfy
convergence condition after 30 iterations, we stop the
contraction mapping and suspend the estimation.

We present results for nominal SNR = 20dB, 144dB,
and 10dB are shown in Fig. 3, 4 and 5, respectively.
The detection probabilities are 0.934, 0.77 and 0.534,
respectively. In these figures, we show the estimated
SNRs, observed SNRs and detection threshold. From the
figures we see that the performance is as expected: as
the detection probability increases, the number of failure
of convergence decreases. In a case of 20dB, ML
estimates are obtained via contraction mapping at all
scans in spite of occurrence of no detection at k= 3.
In a case of 14dB, 7 observed SNRs are lower than the
detection threshold and ML estimates are obtained at all
scan except for k=2. In a case of 10dB, 13 observed
SNRs are Jower than the detection threshold and ML
estimates cannot be obtained eight times.
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Fig. 5. The estimated SNR.
(a) nominal SNR = 20dB.
(b) nominal SNR = 14dB.
(c) nominal SNR = 10dB.

IV. Conclusion

In this paper, we considered the problem of
estimation of SNR for Swerling 1 target to control the
transmitted power and ensure the best performances of
tracking and data association, based on the Maximum
Likelihood method. The event that the target is not
detected has been taken into account in the mathematical
development. The solution to the ML estimation has an
expression in the form of a contraction mapping. To
obtain the ML estimate of SNR, We solved the nonlinear
equation via a contraction mapping theorem. This results
can be easily extended for other Swerling targets. The
future research topic is the estimation of SNR in case
that the returns may be originated from not only the
target but also the random clutter.
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