• Title/Summary/Keyword: Three-way balancing

Search Result 21, Processing Time 0.036 seconds

Three-Way Balanced Multi-level Semi Rotation Sampling Designs

  • Park, You-Sung;Choi, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.19-24
    • /
    • 2002
  • The two-way balanced one-level rotation design has been discussed (Park, Kim and Choi, 2001), where the two-way balancing is done on interview time in monthly sample and rotation group. We extend it to three-way balanced multi-level design under the most general rotation system. The three-way balancing is accomplished on interview time not only in monthly sample and rotation group but also in recall time. We present the necessary condition and rotation algorithm which guarantee the three-way balancing. We propose multi-level composite estimators (MCE) from this design and derive their variances and mean squared errors (MSE), assuming the correlation from the measurements of the same sample unit and three types of biases in monthly sample.

  • PDF

THE EXTENSION OF THREE-WAY BALANCED MULTI-LEVEL ROTATION SAMPLING DESIGNS

  • Kim, K.W.;Park, Y.S.;Lee, D.H.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.343-353
    • /
    • 2006
  • The two-way balanced one-level rotation design, $r_1^m-r_2^{m-1}$, and the three-way balanced multi-level rotation design, $r_1^m(\iota)-r_1^{m-1}$, were discussed (Park et al., 2001, 2003). Although these rotation designs enjoy balancing properties, they have a restriction of $r_2=c{\cdot}r_1$ (c should be a integer value) which interferes with applying these designs freely to various situations. To overcome this difficulty, we extend the $r_1^m(\iota)-r_1^{m-1}$ design to new one under the most general rotation system. The new multi-level rotation design also satisfies tree-way balancing which is done on interview time, rotation group and recall time. We present the rule and rotation algorithm which guarantee the three-way balancing. In particular, we specify the necessary condition for the extended three-way balanced multi-level rotation sampling design.

THREE-WAY BALANCED MULTI-LEVEL ROTATION SAMPLING DESIGNS

  • Park, Y. S.;Kim, K. W.;Kim, N. Y.
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.245-259
    • /
    • 2003
  • The 2-way balanced one-level rotation design has been discussed (Park et al., 2001), where the 2-way balancing is done on interview time in monthly sample and rotation group. We extend it to 3-way balanced multi-level design to obtain more information of the same sample unit for one or more previous months. The 3-way balancing is accomplished not only on interview time in monthly sample and rotation group but also on recall time as well. The 3-way balancing eliminates or reduces any bias arising from unbalanced interview time, rotation group and recall time, and all rotation groups are equally represented in the monthly sample. We present the rule and rotation algorithm which guarantee the 3-way balancing. In particular, we specify the necessary and sufficient condition for the 3-way balanced multi-level rotation design.

Simulation Analysis for Configuring Web Clusters (웹 클러스터 구성을 위한 시뮬레이션 분석)

  • Kang, Sung-Yeol;Song, Young-Hyo
    • Journal of Digital Convergence
    • /
    • v.6 no.2
    • /
    • pp.117-125
    • /
    • 2008
  • High-volume web sites often use clusters of servers with load balancing as a way to increase the performance, scalability, and availability of the sites. Load balancing, usually performed by load balancer in front of such clusters, is a technique to spread workload between several computers or resources, in order to get optimal resource utilization or response time. In this paper we examine the performance for several configurations of cluster-based web servers using a simulation approach. We investigate two types of buffering scheme (common and local) for web clusters and three load balancing policies (uniformly random, round robin, and least queue first), using response time as a performance measure. We also examine two basic approaches of scaling web clusters: adding more servers of same type or upgrading the capacity of the servers in the clusters.

  • PDF

Effect of Horse Riding on Balancing Ability in Children with Cerebral Palsy

  • Kang, Ok-Deuk;Kang, Min-Soo;Kang, An-Na
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.227-231
    • /
    • 2012
  • This study was conducted to investigate the effect of a horse riding program on balancing ability in children with cerebral palsy. Eleven children (five males and six females) diagnosed with cerebral palsy participated. The horse riding exercises (walking and trotting) were conducted twice per week for 30 minutes during 24 weeks. Balancing ability was measured three times at pre, mid, and post-test using an air pad by the same physical therapist. The data were analyzed using a two-way repeated-measures analysis of covariance with time (0, 12, and 24 weeks) using SPSS version 18.0. A comparison of horse riding between patients with hemiplegia and paraplegia was conducted with the Willcoxon signed-ranktest at a predetermined probability rate of 5%. The results showed a significant increase in balancing ability after horse riding than that before horse riding (p<0.01). The average balancing score increased greater in males ($54.59{\pm}84.05$) than that in females ($27.84{\pm}12.67$) after the horse riding exercise program compared to that before the program (p < 0.05). Thus, horse riding exercise was considered an effective to improve balance in children with cerebral palsy. These results provide useful basic data for horse riding for the disabled.

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.11a
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

Three-dimensional Inversion of Resistivity Data (전기비저항 탐사자료의 3차원 역산)

  • Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.191-201
    • /
    • 1999
  • The interpretation of resistivity data has, so far, mainly been made under the assumption that the earth is of relatively simple structure and then using one or two-dimensional inversion scheme. Since real earth structure and topography are fully three-dimensional and very complicated In nature, however, such assumptions often lead to misinterpretation of the earth structures. In such situations, three-dimensional inversion is probably the only way to get correct image of the earth. In this study, we have developed a three-dimensional inversion code using the finite element solution for the forward problem. The forward modeling algorithm simulates the real field situation with irregular topography. The inverse problem is solved iteratively using the least-squares method with smoothness constraint. Our inversion scheme employs ACB (Active Constraint Balancing) to enhance the resolving power of the inversion. Including Irregular surface topography in the inversion, we can accurately define the earth structures without artifact in the numerical tests. We could get reasonable image of earth structure by Inverting the real field data sets taken over highway bridge construction site.

  • PDF

Development of BMS applying to LPB Pack in Bimodal Tram (바이모달트램용 LPB팩에 적용될 Battery Management System 개발)

  • Lee, Kang-Won;Chang, Se-Ky;Nam, Jong-Ha;Kang, Duk-Ha;Bae, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.477-477
    • /
    • 2009
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

  • PDF

Development and Application of LPB Management System for Bimodal Tram (바이모달트램용 LPB Management System 개발 및 적용)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

Design of an Asymmetrical Three-phase Inverter for Load Balancing and Power Factor Correction Based on Power Analysis

  • Mokhtari, M.;Golshannavaz, S.;Nazarpour, D.;Aminifar, F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • This paper presents a novel theoretical method based on power analysis to obtain voltage reference values for an inverter-based compensator. This type of compensator, which is installed in parallel with the load, is usually referred to as the active filter. The proposed method is tailored to design the compensator in such a way that it can simultaneously balance the asymmetric load, as well as correct the power factor of the supply side. For clarity, a static compensator is first considered and a recursive algorithm is utilized to calculate the reactance values. The algorithm is then extended to calculate voltage reference values when the compensator is inverter based. It is evident that the compensator would be asymmetric since the load is unbalanced. The salient feature associated with the proposed method is that the circuit representation of system load is not required and that the load is recognized just by its active and reactive consumptions. Hence, the type and connection of load do not matter. The validity and performance of the new approach are analyzed via a numerical example, and the obtained results are thoroughly discussed.