• Title/Summary/Keyword: Three-phase transformer type superconducting fault current limiter (SFCL)

Search Result 5, Processing Time 0.022 seconds

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench (이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석)

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Operation characteristics of SFCLs combined with a transformer in three-phase power system

  • Jung, B.I.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.30-33
    • /
    • 2013
  • The studies of superconducting fault current limiter (SFCL) for reduction of the fault current are actively underway in the worldwide. In this paper, we analyzed the characteristics of a new type SFCL using the conventional transformer and superconducting elements combined mutually. The secondary and third windings of this SFCL were connected the load and the superconducting element, respectively. The electric power was provided to load connected to secondary windings of the transformer in normal state of power system. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the ripple phenomenon of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the CT(current transformer) and then turn-on and turn-off switching behavior of the SFCL was performed by the SCR(silicon-controlled rectifier). As a result, the proposed SFCL limited the fault current within a half-cycle efficiently. We confirmed that the fault current limitation rate was changed according to the winding ratio of a transformer.

Characteristics according to turn ratio of Separated Three-Phase Flux-Coupling Type Superconducting Fault Current Limiter(SFCL) (삼상 분리형 자속커플링 전류제한기의 턴 수의 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Du, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.344-345
    • /
    • 2009
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to turn ratio in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to turn ratio.

  • PDF

Current Limiting Characteristics of Separated Three-phase Flux-coupling Type SFCL according to Winding Number of Coil 2 and Winding Direction (삼상 분리형 자속커플링 전류제한기의 2차 권선의 턴 수 및 결선 방향에 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.694-697
    • /
    • 2009
  • The separated three-phase flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through winding number of coil 2 and winding direction in the flux-coupling type SFCL. Through the analysis, it was shown that additive polarity condition and lower winding number of coil 2 have advantaged from the point of view of fault current limiting and burned of YBCO coated conductor.