DOI QR코드

DOI QR Code

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types

이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석

  • Shin-Won Lee (Department of Computer Engineering, Jungwon University) ;
  • Tae-Hee Han (Department of Semiconductor Engineering, Jungwon University) ;
  • Sung-Hun Lim (Department of Electrical Engineering, Soongsil University)
  • 이신원 (중원대학교 컴퓨터공학과) ;
  • 한태희 (중원대학교 반도체공학과) ;
  • 임성훈 (숭실대학교 전기공학과)
  • Received : 2023.08.08
  • Accepted : 2023.08.23
  • Published : 2023.11.01

Abstract

The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No.2020R1F1A1077206) and was also supported by the Jungwon University Grant for 2022 Research Year.

References

  1. L. Ye, L. Z. Lin, and K. P. Juengst, IEEE Trans. Appl. Supercond., 12, 900 (2002). doi: https://doi.org/10.1109/TASC.2002.1018545
  2. S. H. Lim, H. S. Choi, and B. S. Han, IEEE Trans. Appl. Supercond., 16, 715 (2006). doi: https://doi.org/10.1109/TASC.2006.871269
  3. S. H. Lim, T. H. Han, Y. S. Cho, H. S. Choi, B. S. Han, and S. W. Lee, Physica C, 463, 1198 (2007). doi: https://doi.org/10.1016/j.physc.2007.03.458
  4. C. R. Park, H. I. Du, B. H. Choi, B. S. Han, H. S. Choi, and Y. H. Han, IEEE Trans. Appl. Supercond., 18, 721 (2008). doi: https://doi.org/10.1109/TASC.2008.920662
  5. S. H. Lim, J. S. Kim, J. F, Moon, J. C. Kim, S. B. Rhee, C. H. Kim, and O. B. Hyun, IEEE Trans. Appl. Supercond., 19, 1835 (2009). doi: https://doi.org/10.1109/TASC.2009.2017754
  6. Y. Shirai, S. Noda, K. Yamabe, K. Hattori, J. Baba, T. Nishihara, T. Nitta, S. Kobayashi, and K. Sato, IEEE Trans. Appl. Supercond., 23, 5601905 (2013). doi: https://doi.org/10.1109/TASC.2012.2233533
  7. Y. Shirai, S. Noda, K. Yamabe, K. Hattori, J. Baba, S. Kobayashi, and K. Sato, Physica C, 484, 248 (2013). doi: https://doi.org/10.1016/j.physc.2012.03.039
  8. K. Yamabe, N. Yonemura, Y. Shirai, and J. Baba, IEEE Trans. Appl. Supercond., 24, 5600505 (2014). doi: https://doi.org/10.1109/TASC.2013.2284543
  9. S. Yan, L. Ren, Y. Zhang, K. Zhu. R. Su, Y. Xu, Y. Tang, J. Shi, and J. Li, IEEE Trans. Appl. Supercond., 29, 5603205 (2019). doi: https://doi.org/10.1109/TASC.2019.2908614
  10. T. H. Han, S. H. Lim, and S. C. Ko, J. Electr. Eng. Technol., 15, 2501 (2020). doi: https://doi.org/10.1007/s42835-020-00534-2
  11. S. C. Ko, T. H. Han, and S. H. Lim, IEEE Trans. Appl. Supercond., 31, 5600505 (2021). doi: https://doi.org/10.1109/TASC.2021.3057318