• Title/Summary/Keyword: Three-dimensional microstructures

Search Result 61, Processing Time 0.036 seconds

Design and Manufacturing processes of Ti-6Al-4V profiled ring-products (Ti-6Al-4V 합금의 형상 링 압연공정 설계 및 제조기술)

  • Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.72-75
    • /
    • 2009
  • Design and Manufacturing processes of Ti-6Al-4V profiled ring-products were investigated with three-dimensional FEM simulation and experimental analyses. FEM simulation for the ring-rolling process was used to calculate the state variables such as strain, strain rate and temperature. In the simulation results of strain and temperature distributions for a plane ring rolling process, the strain level at the surface area is higher than that at the mid-plane, but the temperature level at the surface area is lower than that at mid-plane due to heat transfer between the workpiece and the work roll. These distributions showed a great influence on the evolution of microstructure in different positions. In order to induce the uniform deformation of the profile ring and reduce the applied load, the final blank was prepared by two-step processes. The mechanical properties of Ti-6Al-4V alloy ring products made in this work were investigated with tensile and impact tests and analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

Improvement of Spatial Resolution in Nano-Stereolithography Using Radical Quencher

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Kim, Ran-Hee;Lee, Kwang-Sup
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.559-564
    • /
    • 2006
  • The improvement of spatial resolution is a fundamental issue in the two-photon, polymerization-based, laser writing. In this study, a voxel tuning method using a radical quencher was proposed to increase the resolution, and the quenching effect according to the amount of radical quencher was experimentally investigated. Employing the proposed method, the lateral resolution of the line patterns was improved almost to 100 nm. However, a shortcoming of the quenching effect was the low mechanical strength of polymerized structures due to their short chain lengths. Nano-indentation tests were conducted to evaluate quantitatively the relationship between mechanical strength and the mixture ratio of the radical quencher into the resins. The elastic modulus was dramatically reduced from an average value of 3.015 to 2.078 GPa when 5 wt% of radical quencher was mixed into the resin. Three-dimensional woodpile structures were fabricated to compare the strength between the resin containing radical quencher and the original resin.

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Development of Micro-bellows Actuator Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발)

  • Kang H.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF

The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

  • Kim, Jo-Eun;Shin, Jae-Myung;Oh, Sung-Ook;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul;Huh, Kyung-Hoe
    • Imaging Science in Dentistry
    • /
    • v.43 no.4
    • /
    • pp.227-233
    • /
    • 2013
  • Purpose: This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Materials and Methods: Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Results: Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. Conclusion: There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

Atomic Scale Investigation of TRIP Steels (변태 유기 소성강(TRIP steel)의 미세구조와 원자 단위 분석)

  • Lim, N.S.;Kang, J.S.;Kim, S.I.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.273-276
    • /
    • 2008
  • In this study, microstructure and distribution of alloy elements were investigated in thermo-mechanically processed C-Mn-Si transformation induced plasticity (TRIP) steels. The microstructures of TRIP steels were investigated by using advanced analysis techniques, such as three dimensional atom probe tomography (3D-APT). At first, the microstructure was observed by using TEM. TEM results revealed that microstructure of C-Mn-Si TRIP steel was composed of ferrite, bainte, and retained austenite. 3D-APT was used to characterize atomic-scale partitioning of added elements at the phase interface. In the retained austenite phase, Ti and B were enriched with C. However, there was no fluctuation of Mn and Si concentration across the interface. Through these analysis techniques, the advanced characteristics of constituent microstructure in C-Mn-Si TRIP steels were identified.

  • PDF

Design for Micro-stereolithography using Axiomatic Approach (공리적 설계를 이용한 마이크로 광 조형 장치의 설계)

  • 이승재;이인환;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.106-111
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate any form of three-dimensional microstructures. It makes a 3D structure by dividing the shape into many slices of relevant thickness along horizontal surface, hardening each layer of slice with a laser, and stacking them up to a desired shape. Until now, however, the micro-stereolithography device was not designed systematically because the key factors governing the device were not considered. In this paper, we designed micro-stereolithography device using axiomatic approach. This paper contains an overview and an analysis of a new proposed system for development of micro-stereolithegraphy device, and detailed descriptions of the activities in this system. The newly designed system offers reduced machine size by minimizing of optical components and decoupled design matrix.

Fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region (저밀도 이광자 광중합 영역을 이용한 30 nm 이하의 패턴제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1249-1253
    • /
    • 2007
  • Experimental studies on the fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region have been carried out. For the generation of nanofibers inside or outside microstructures, an over-polymerizing method involving a long exposure technique (LET) was proposed. Such nanofibers can find meaningful applications as bio-filters, mixers, and many other uses in diverse research field. A multitude of nanofibers with a notably high resolution (about 22 nm) in two-photon polymerization was achieved using the LET. Furthermore, it was demonstrated that the LET can be employed for the direct fabrication of various embossing patterns by controlling the exposure duration and the interval between voxels. Thin interconnecting networks are formed regularly in the boundary of the over-polymerized region, which allows for the creation of various pattern shapes. Overall of this work, some patterns including nanofibers are fabricated by the LET.

  • PDF

Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li;Yang, Shang-Tian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.311-325
    • /
    • 2001
  • Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

  • PDF