Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li (Department of Chemical Engineering, The Ohio State University) ;
  • Yang, Shang-Tian (Department of Chemical Engineering, The Ohio State University)
  • Published : 2001.09.01

Abstract

Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

Keywords

References

  1. Science v.260 Tissue engineering Langer, R.;J.P. Vacanti
  2. Therapy v.1 Tissue engineering Langer, R.
  3. Proc. Natl. Acad. Sci. USA v.86 Macroporous polymer foams by hydrocarbon templating Shastri, V.P.;I. Martin;R. Langer
  4. Nature Biotechnol v.17 De novo reconstitution of a functional mammalian urinary bladder by tissue engineering Oberpenning, E.;J.Meng;J.J. Yoo;A. Atala
  5. Science v.284 Functional arteries grown in vitro Niklason, L.E.;J. Gao;W.M. Abbott;K.K. Hirschi;S. Houser;R. Marini;R. Langer
  6. Science v.286 Functional human corneal equivalents constructed from cell lines Griffith, M.;R. Osborne;R. Munger;X. Xiong;C.J. Doillon;N.L.C. Laycock;M. Hakim;Y. Song;M.A. Watsky
  7. Biomaterials v.17 Role of material surfaces in regulating bone and cartilage cell response Boyan, B.D.;T.W. Hummert;D.D. Dean;Z. Schwartz
  8. J. Cell. Biol. v.109 Mechanical switching between growth and differentiation during fibroblast growth factors-stimulated angiogenesis in vitro: role of extracellular matrix Ingber, D.E.;J. Folkman
  9. J. Cellular Physiol. v.151 Switching from differentiation to growth in hepartocytes: Control by extracellular matrix Mooney, S.J.;L. Hansen;J.P. Vacanti;R. Langer;S. Farmer;D.E. Ingber
  10. J. Biomed. Mater. Res. (Appl. Biomater) v.33 Resorbable polysters in cartilage engineering; affinity and biocompatibility of polymer fiber structures to chondrocytes Sittinger, E.;D. Reitzel;M. Dauner;H. Hierlemann;C. Hammer;E. Kastenbauer;H. Planck;G.R. Burmester;J. Bujia
  11. Exp. Cell Res. v.251 Engineered smooth muscle tissues: regulating cell phenotype with scaffold Kim, B.-S.;J. Nikolovski;J. Bonadio;E. Smiley;D.J. Mooney
  12. J. Biomed. Mater. Res. v.47 Contack guidance of rat fibroblasts on various implant meterials Walboomers, X.E.;H.J.E. Croes;L.A. Ginsel;J.A. Jansen
  13. J. Colloid Interface Sco v.127 Enhancement of serum fibronectin adsorption and the clonal plating efficiencies of Swiss Mouse ST3 fibroblast and MM14 Mouse myoblast cells on polymer substrates modified by radiofrequency plasma deposition Chinn, J.A.;T.A. Horbett;B.D. Ratner;M.B. Schway;Y. Haque;S.D. Hauschka
  14. Macromolecules v.31 Chemical surface modification of poly(ethylene terephthalate) Chen, W.;T.J. McCarthy
  15. Biomaterials v.20 Porous chitosan scaffolds for tissue engineering Madihally, S.V.;W.T. Matthew
  16. MRS Bulletin v.21 New biomaterials for tissue engineering James, K.;J. Kohn
  17. J. Biomed. Mater. Res. v.42 Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester Aigner, J.;J. Tegeler;P. Hutzler;D. Campoccia;A. Pavesio;C. Hammer;E. Kastenbauer;A. Naumann
  18. Biotechnol. Bioeng. v.67 Hepatocyte behavior within three-dimensional porous alginate scaffolds Glicklis, R.;L. Shapiro;R. Ahbaria;J.C. Merchuk;S. Cohen
  19. Biomaterials v.21 Review: tissue engineering for regeneration of articular cartilage Temenoff, J.S.;A.G. Mikos
  20. Trends Biotechnol. v.17 Rationalizing the design of polymeric biomaterials Angelova, N.;D. Hunkeler
  21. Biotechnol. Prog. v.14 Micropatterned surfaces for control of cell shape, position, and function Chen, C.S.;M. Mrksich;S. Huang;G.M. Whitesides;D.E. Ingber
  22. Science v.276 Geometric control of cell life and death Chen, C.S.;M. Mrksich;S. Huang;G.M. Whitesides;D.E. Ingber
  23. Science v.264 Engineering cell shape and function Singhvi, R.;A. Kumar;G.F. Lopez;G.N. Stephanopoulos;D.I.C. Wang;G.M. Whitesides;D.E. Ingber
  24. J. Biomed. Mater. Res. v.29 Effect of parallel surface microgrooves and surface energy on cell growth Braber, E.T.D.;J.E.D. Ruijter;H.T.J. Smiths;L.A. Ginsel;A.E.V. Recum;J.A. Jansen
  25. J. Biomed. Mater. Res.(Apl. Biomater.) v.43 Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell sysle analysis Van Kooten, T.G.;J.E. Whitesides;A.E. Von Recum
  26. Biotechnol. Bioeng. v.43 Reivew: Effects of substratum morphology on cell physiology Singhvi, R.;G. Stephanopoulos;D.I.C. Wang
  27. Biotechnol. Prog. v.15 Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells Rezania, A.;K.E. Healy
  28. Biotechnol. Prog. v.14 Cellular micropatterns on biocompatible meterials Folch, A.;M. Toner
  29. FASEB J. v.12 Spatially controlled cell engineering on biodegradable polmer surfaces Patel, N.;R. Padera;G.H.W. Sanders;S.M. Cannizzaro;M.C. Davies;R. Langer;C.J. Roberts;S.J.B. Tendler;P.M. Willians;K.M. Shakesheff
  30. Biotechnol. Bioeng. v.5758 A novel biotinylated degradable polymer for cell-interactive applications Cannizzaro, S.M.;R.F. Padera;R. Langer;R.A. Rogers;F.E. Black;M.C. Davies;S.J.B. Tendler;K.M. Shakeshef
  31. Nanotechnology v.9 Regulation of cell fuctions by micropattern-immobilized biosignal molecules Ito, Y.
  32. Am. J. Physiol. Cell. Physiol. v.273 Three-dimensional cell cultures from molecular mechanisms to clinical applications Wueller-Klieser, M.
  33. Cancer Metastasis Rev. v.13 The three-dimensional question: can clinically-relevant tumor drug resistance be measured in vitro Hoffman, R.M.
  34. J. Biomed. Mater. Res. v.51 A biodegradable hybrid sponge nested with collagen microsponges Chen, G.T.;T. Ushida;T. Tateishi
  35. Trends Biotechnol. v.16 Development of biocompatible synthetic extracellular matrices for tissue engineering Kim, B.-S.;D.J. Mooney
  36. Biomaterials v.17 Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and mew cell culture techniques Sittinger, M.;J. Bujia;N. Rotter;D. Reitzel;W.W. Minuth;G.R. Burmester
  37. Materials Manufacturing Proc. v.10 Nonwovens as three-dimensional textiles for composites Bhat, G.S.
  38. Cell Transplantation v.5 Fabrication of pliable biodegradable polymer foams to engineer soft tissues Wake, M.C.;P.K. Gupta;A.G. Mikos
  39. MRS Bulletin v.21 The importance of new processing technique in tissue engineering Lu, L.;A.G. Mikos
  40. J. Biomed. Mater. Res. v.42 Open pore biodegradable matrices foamed with gas foaming Harris, L.D.;B.S. Kim;D.J. Mooney
  41. Polymer v.36 A novel method to fabricate bioasorbable scaffolds Whang, K.C.;H. Thomas;K.E. Healy
  42. Biomaterials v.20 Fabrication of porous gelatin scafolds for tissue engineering Kang, H.-W.;Y. Tabata;Y. Ikada
  43. Biomaterials v.17 Stabilized polyglycolic acid fibre-based tubes for tissue engineering Mooey, D.J.;C.L, Mazzoni;C. Breuer;K. McNamara;D. Hern;J.P. Vacanti;R. Langer
  44. Biomaterials v.22 Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds Li, Y.;T. Ma;S.T. Yang;D.A. Kniss
  45. J. Biomed. Mater. Res. (Appl. Biomater.) v.53 Pore structure analysis of swollen dextran-methacrylate hydrogel by SEM and mercury intrusion porosimetry Kim, S.-H.;C.-C. Chu
  46. FASEB J. v.10 Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration Berthiaume, F.;P. Moghe;M. Toner;M.L. Yarmush
  47. Biotechnol. Bioeng. v.43 Composition of cellpolymer carilage implants Freed, L.E.;J.C. Marquis;G. Vunjak-Nonakovic;J. Emmanual;R. Langer
  48. J. Biomed. Mater. Res. v.52 Tissue response to single-polymer fibers of varying diameters: Evaluation to fibrous encapsulation and macrophage density Sanders, J.E.;C.E. Stiles;C.L. Hayes
  49. Biomaterials v.17 Tissue engineering scaffolds using superstructures Wintermantel, E.;J. Mayer;K.-L. Eckert;P. Luscher;M. Mathey
  50. Tissue Eng. v.5 Polymer substrate topography aactively regulates the multicelluar organization and liver-specific functions of cultured hepatocytes Ranucci, C.S.;P.V. Moghe
  51. BIomaterials v.21 Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellualr morphogenesis Ranucci, C.S.;A. Kumer;S.P. Batra;P.V. Moghe
  52. Cytotechnology v.31 Spatial development of the cultivation of a bone marrow stromal cell line in porous carriers Takagi, M.;T. Sasaki;T. Yoshida
  53. Biomaterials v.18 Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes Nehrer, S.;H.A. Breinan;A. Ramappa;G. Young;S. Shorkroff;L.K. Louie;C.B. Sledge;I.V. Yannas;M. Spector
  54. J. Biomed. Mater. Res. v.29 Neovascularization of synthetic membranes directed by membrane microarchitecture Brauker, J.H.;V.E. Carr-Brendel;L.A. Martinson;J. Crudele;W.D. Johnston;R.C. Jonson
  55. Cell Transplantation v.3 Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates Wake, M.C.;C.W. Patrick;A.G. Mikos
  56. Proc. Nalt. Acad. USA v.86 Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin Yannas, I.V.;E. Lee;O.P. Orgil;E.M. Krabut;F. Murphy
  57. Biomaterials v.20 In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration Evans, G.R.D.;K. Brandt;M.S. Wkdmer, L. Lu;R.K. Meszlenyi;P.K. Gupta;A.G. Mikos;J. Hodges;J. Williams;A. Gurlek;A. Nabawi;R. Lohman;Jr.C.W. Patrick
  58. J. Biomaterials Sci. Polymr Edition v.9 The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold Dillon, G.P.;X. Yu;A. Sridharan;J.P. Ranieri;R.V. Bellamkonda
  59. Tissue Eng. v.5 Predipocyte seeded PLGA scaffolds for adipose tissue engineering Patrick, C.W.;P.B. Chauvin;J. Hobley;G.P. Reece
  60. Biomaterials v.21 Osteoconduction at porous hydroxyapatite with various pore configurations Chang, B.-S.;C.-K. Lee;K.-S. Hong;H.-J. Youn;H.-S. Ryu; S.-S. Chung;K.-W. Park
  61. Biomaterials v.19 Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth Gauthier, O.;J.-M. Bouler;E. Aguado;P. Pilet;G. Daculsi
  62. Tissue Eng v.5 Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture Whang, K.;K.E. Healy;D.R. Elenz;E.K. Nam;D.C. Tsai;C.H. Thomas;G. W. Nuber;F.H. Glorieux;R. Travers;S.M. Sprague
  63. J. Cell. Sci. v.112 Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture Hayen, W.;M. Goebeler;S. Kumar;R. Rieben;V. Hehls
  64. J. Biomed. Mater. Res. v.31 Surface microarchitectural design n biomedical applications: in vitro transmural endothelialization on microporous segmented polyurrethane films fabricated using an excimer laser Matsuda, T.;Y. Nakayama
  65. Biotechnol. Prog. v.15 Tissue engineering human placenta trophoblast cells in 3-D fibrous matrix: spatial effects on cell proliferation and function Ma, T.;Y. Li;S.T. Yang;D.A. Kniss
  66. Biotechnol. Bioeng. v.70 Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development Ma, T.;Y. Li;S.T. Yang;D.A. Kniss
  67. J. Biomed. Mater. Res. v.40 Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels Herbert, C.B.;C. Nagaswami;G.D. Bittner;J.A. Hubbell;J.W. Weisel
  68. J. Cellular Biochem. v.51 Cultivation of cell-polymer cartilage implants in bioreactors Freed, L.E.;G. Vunjak-Novakovic;R. Langer
  69. J. Biomed. Mater. Res. v.36 Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds Ishaung, S.L.;G.M. Crane;M.J. Miller;A.W. Yaskoi;M.J. Yaszemski;A.G. Mikos
  70. Biometerials v.36 Three-demensional culture of rat calvarial osteoblasts in porous biodegradable polymers Ishaung-Riley, S.L.;G.M. Crane;M.J. Yaszemski;A.G. Mikos
  71. Cell Transplantation v.5 Immobilization of rat hepatocytes on multiporous microcarriers with large pores and their metabolic activity Kino, Y.;M. Sawa;S. Kasai;F. Nakazawa;K. Kota;T. Yamamoto;M. Mito
  72. Transplantation Proceedings v.29 Highly porous polymer matrices as a three-dimensional culture system fro hepatocytes: initial results Kaufmann, P.M.;S. Heimrath;B.S. Kim;D.J. Mooney
  73. Biomaterials v.17 Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function Moghe, P.V.;F. Berthiaume;R.M. Ezzell;M. Toner;R.G. Tompkins;M.L. Yarmush
  74. Nature Biotechnol. v.17 DNA delivery from polymer matrices for tissue engineering Shea, L.D.;E. Smiley;J. Bonadio;D.J. Mooney
  75. Biotechnol. Prog. v.14 Development of technologies aiding large-tissue engineering Eiselt, P.;B.-S. Kim;B. Chacko;B. Isenberg;M.C. Peters;K.G. Greene;W.D. Roland;A.B. Loebsack;K.J.L. Burg;C. Culberson;C.R. Halerstadt;W.D. Holder;D.J. Mooney
  76. Curr. Opin. Biotechnol. v.10 Bioactive biomaterials Hubbell, J.A.
  77. J. Biomed. Mater. Res. v.52 Peripheral nerve regeneration using bioresorbable macroporous polyactide scaffolds Maquet, V.;D. Martin;B. Malgrange;R. Franzen;J. Schoenen;G. Moonen;R. Jerome
  78. Adv. Drug. Delivery Rev. v.33 Culture of organized cell communities Freed, L.F.;G. Vunjak-Novakovic
  79. Tissue Eng v.5 Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds Goldstein, A.S.;G. Zhu;G.E. Morris;R.K. Meszlenyi;A.G. Mikos
  80. Biomaterials v.18 Novel alginate sponges for cell culture and transplantation Shapiro, L.;S. Cohen
  81. J. Biomed. Mater. Res. v.41 Engineering smooth muscle tissue with a predefined structure Kim, B.-S.;D.J. Mooney
  82. Biomaterials v.21 Bioabsorbable scaffolds for guided bone regeneration and generation Kellomaki, M.;H. Niiranen;K. Puumanen;N. Ashammakhi;T. Waris;P. Tormala
  83. Biomaterials v.21 Scaffolds in tissue engineering bone and cartilage Hutmacher, D.W.
  84. Biomaterials v.21 Biomaterial development for bone tissue engineering Burg, K.J.L.;S. Porter;J.E. Kellam
  85. Tissues Eng. v.6 Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomateirals Reddi, A.H.
  86. J. Med. v.18 Hematopoiesis on nylon mesh templates.Ⅰ. Long-term culture of rat bone marrow cells Naughton, B.A.;R.A. Preti;G.K. Naughton
  87. Exp. Hematol. v.23 Multilineal hematopoiesis in a three-dimensional murine lone-term bone marrow culture Wang, T.-Y.;J.K. Brennan;J.H.D. Wu
  88. Exp. Hematol. v.27 Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device Bagley, J.;M. Rosenzweig;D.E. Marks;M.J. Pykett
  89. Blood v.16 no.Suppl Ex vivo expansion of hematopoietic progenitors from human cord blood cells in three-dimensional fibrous matrices Li, Y.;T. Ma;S.T. Yang;D.A. Kniss;L.C. Lasky
  90. Cytotechnology v.34 The construction of an in vivo three-dimensional hematopoietic microencironment for mouse bone marrow cells employing porous carriers Tomimori, Y.;M. Takagi;T. Yoshida
  91. Trends Biotechnol. v.18 Human embryonic stem cell and embryonic germ cell lines Thomson, J.A.;J.S. Odorico
  92. Int. J, Hematol. v.65 In vivo development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis Nakano, T.
  93. Prog. Natl. Acad. Sci. USA v.97 Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells Schuldiner, M.;O. Yanuka;J. Itskovitz-Eldor;D.A. Melton;N. Benenisty
  94. Biotechnol. Bioeng. v.69 Leukemia inhibitory factor(LIF) concentration modulates embryonic stem cell selfrenewal and differentiation independently of proliferation Zandstra, P.W.;H.-V. Le;G.O. Daley;L.G. Griffith;D.A. Lauffenburger
  95. J. Bone. Jt. Surg.(Br.) v.71 Biological responese to woven carbon fibre pads in the knee: a clinical and experimental study Muckle, D.S.;R.J. Minns
  96. J. Biomed. Mater. Res. v.34 Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts Grande, D.A.;C. Halberstadt;G. Naughton;R. SchwartzR. Manji
  97. J. Biomed. Mater. Res. v.43 Organ culture in 3-Dimensional matrix: in vivo model for evaluating biological compliance of synthetic mashes for abdominal wall repair Dasdia, T.;S. Bazzaco;L. Bottero;R. Buffa;S. Ferrero;G. Campanelli;E. Dolfini
  98. Biomaterials v.20 Biological performance of a three-dimensional fabric as artificial cartilage in the repair of large osteochondral defects in rabbit Hsegawa, M.;A. Sudo;Y. Shikinami;A. Uchida
  99. Bio/Technology v.12 Biodegradable polymer scaffolds for tissue engineering Freed, L.E.;G. Vunjak-Novakovic;R.J. Biron;D.B. Eagles;D.C. Lesnoy;S.K. Barlow;R. Langer
  100. Tissue Eng. v.6 Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs Brown, A.N.;B.-S. Kim;E. Alsberg;D.J. Moony
  101. J. Biomed. Mater. Res. v.49 Matrix-mixed culture: New methodology for chondrocyte culture and preparation of cartilage transplants Perka, C.;R.-S. Spitzer;K. Lindenhayn;M. Sittinger;O. Schultz