• Title/Summary/Keyword: Three-dimensional method

Search Result 5,528, Processing Time 0.037 seconds

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery (UAS 영상기반 문화유산물의 정밀 3차원 현상 모델링)

  • Lee, Yong-Chang;Kang, Joon-Oh
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.85-101
    • /
    • 2019
  • Recently, thank to the popularization of light-weight drone through the significant developments in computer technologies as well as the advanced automated procedures in photogrammetry, Unmanned Aircraft Systems have led to a growing interest in industry as a whole. Documentation, maintenance, and restoration projects of large scaled cultural property would required accurate 3D phenomenon modeling and efficient visual inspection methods. The object of this study verify on the accuracies achieved of 3D phenomenon reconstruction as well as on the validity of the preservation, maintenance and restoration of large scaled cultural property by UAS photogrammetry. The test object is cltural heritage(treasure 1324) that is the rock-carved standing Bodhisattva in Soraesan Mountain, Siheung, documented in Goryeo Period(918-1392). This standing Bodhisattva has of particular interests since it's size is largest stone Buddha carved in a rock wall and is wearing a lotus shaped crown that is decorated with arabesque patterns. The positioning accuracy of UAS photogrammetry were compared with non-target total station survey results on the check points after creating 3D phenomenal models in real world coordinates system from photos, and also the quantified informations documented by Culture Heritage Administration were compared with UAS on the bodhisattva image of thin lines. Especially, tests the validity of UAS photogrammetry as a alternative method of visual inspection methods. In particular, we examined the effectiveness of the two techniques as well as the relative fluctuation of rock surface for about 2 years through superposition analysis of 3D points cloud models produced by both UAS image analysis and ground laser scanning techniques. Comparison studies and experimental results prove the accuracy and efficient of UAS photogrammetry in 3D phenomenon modeling, maintenance and restoration for various large-sized Cultural Heritage.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

Salivary Flow According to Elderly's Whole Health and Oral Health Status: According to Application of Oral exercise and Salivary Gland Massage

  • Oh, Ji-Young;Noh, Eun-Mi;Park, Hye-Young;Lee, Min-Kyung;Kim, Hye-Jin
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.218-226
    • /
    • 2019
  • In old age, measures to cope with the natural phenomenon of aging and various diseases of the elderly due to the deterioration of physical function are also a challenge for this society. While interest in systematic health is increasing, it is true that awareness and interest in oral-related diseases is relatively lacking. This study aims to present basic data necessary to improve the quality of life for senior citizens aged 65 or older by improving the oral dryness caused by systemic health. By research method, improve oral dryness caused by whole-body health with the elderly over 65 and promote their oral health, inducing the increase of the salivary flow rate through oral health care education, oral exercise, and salivary gland massage. First, on the DMSQ according to the general characteristics of the elderly, the recognition of the whole body and oral health status, independent sample t-test and One-way ANOVA were conducted. Second, on changes in the salivary flow rate and saliva pH according to the general characteristics of the elderly, recognition of oral and whole-body health status, and whole-body health, paired samples t-test was conducted. Studies have shown that salivary gland flow increased significantly after oral exercise and salivary gland massage, the salivary flow rate significantly increased. In all variables of the recognition of the oral health status, the salivary flow rate increased after oral exercise and salivary gland massage, and in the whole-body health, regardless of hypertension, diabetes, cardiovascular disorders, and osteoporosis, the salivary flow rate increased after oral exercise and salivary gland massage, and the salivary flow rate increased after oral exercise and salivary gland massage if the subjects responded that they did not have thyroid abnormality, anemia, abnormalities of breathing, hypotension, gastrointestinal disturbance, or kidney diseases. As a comprehensive analysis of this study, many felt oral dryness when they had a problem with the whole-body health, and many felt oral dryness when they had a problem with oral health cognition. After applying oral exercise and salivary gland massage as intervention methods in the oral health care for the elderly, the salivary flow rate significantly increased, and it is judged that the methods were very effective for controlling oral dryness. Furthermore, it is judged that the factors affecting oral health, whole-body health, and oral dryness would be identified, which would be helpful for the promotion of whole-body health and oral health. It is judged that continuous research would be needed so that measures for the application of the oral care program and system for the elderly would be prepared in the future.

Effect of milling tool wear on the internal fit of PMMA implant interim prosthesis (밀링 공구의 마모가 PMMA 임플란트 임시보철물 변연 및 내면적합도에 미치는 영향)

  • Shin, Mi-sun
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the effect of CAD/CAM system milling tool wear on the marginal and internal fit of PMMA implant interim prosthesis three-dimensional manner. Methods: A total of 20 crowns were fabricated with CAD/CAM method. Their designs were unified to first molar of the left maxilla. The Customized abutments were prepared and scanned with on optical model scanner. Five crowns were milled by the newly replaced tool (1st milling), and 15 crowns were milled by 2nd, 3rd, 4th milling tool. The marginal and internal fit of 20 interim crowns were measured using the triple-scan protocol. Results: Statistically significant difference was found between the $1^{st}$ milling group ($51.8{\pm}14.6{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($128.6{\pm}43.8{\mu}m$, $146.2{\pm}38.1{\mu}m$, respectively) at the distal margins. In the mesial margins, There was a statistically significant difference between the $1^{st}$ milling group ($63.6{\pm}25.9{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($137.2{\pm}25.9{\mu}m$, $186.8{\pm}70.6{\mu}m$, respectively). In the distal line angle, significant difference was found between the $1^{st}$, $2^{nd}$, $3^{rd}$ milling groups and the $4^{th}$ milling group. In the mesial axial wall, significant difference was found between the $1^{st}$ milling group ($52.2{\pm}20.3{\mu}m$) and the $3^{rd}$, $4^{th}$ milling groups ($22.8{\pm}8.8{\mu}m$, $7.8{\pm}5.7{\mu}m$). Conclusion: As a result of the experiment, decrease of the marginal and internal fit was statistically significant as the number of machining cycles increased. In order to produce clinically excellent restorations, it is recommandable to consider the condition of the milling tool wear, when designing the restoration with CAD program.

Structural Disorganization of Intestinal Tumor Spheroid by Microbial Ribotoxins (방사선 모사 미생물 유래 리보솜 스트레스에 의한 대장암 스페로이드 구조 결함 유발)

  • Kim, Juil;Kim, Joongkon;Yu, Mira;Moon, Yuseok
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.164-171
    • /
    • 2019
  • Radiation therapy has many side effects, such as digestive mucosal ulcers, without regard to its efficacy. The purpose of this study is to address an alternative method to replace the limitation of radiation therapy using radiomimetic microbial ribotoxins. In the evaluation of cancer therapy, we analyzed the formation of colorectal cancer (CRC) cell spheroids, which can take into account the heterogeneous cellular constitution, tumor stem cells, and the surrounding microenvironment. Ribotoxic stress interfered with the spheroid structure composed of relatively small clusters. Spheroids under ribotoxic stress were structurally sparse and their shrinkage was very slow. In the control group, the clusters of strongly aggregated cells were resistant to physical stress, but the ribotoxic stress-exposed spheroids were easily broken up by the physical stress. Moreover, the ribosome-insulted CRC cells slowly migrated to form clusters and the cell-cell junctional points in the ribosome-insulted spheroids were rarer than those in the control CRC spheroid. Moreover, levels of the cell-to-cell junctional protein E-cadherin were suppressed by ribotoxic stress in both allograft and xenograft spheroids. In conclusion, the radiomimetic microbial ribotoxins induced structural defects in CRC cell spheroids via retardation of migration and cell-cell junction in the formation of three-dimensional structures, and provides a basis for the mechanism of pharmacological radiomimetic anticancer actions as an alternate to radiotherapy against cancer.

Construction of Precise Mine Geospatial Information and Ore Modeling for Smart Mining (스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • In mineral resource development, resource exploration is a task to find economical minerals on the surface and underground, and the success rate is low compared to the development and production stages, and it is necessary to collect a lot of data through exploration and accurately analyze the collected information. In this study, mine spatial information was constructed using a 3D (Three-dimensional) laser scanner, and accuracy evaluation was performed to obtain a maximum deviation of 0.140 m and an average of 0.095 m in the X, Y and Z directions, and the possibility of utilizing the construction of mine geospatial information through a 3D laser scanner could be presented. In addition, the ore body modeling was performed by applying the interpolation method of the ore body section using the resource exploration results. The ore body modeling result was superimposed with the modeling result of the mine geospatial information built through the 3D laser scanner to construct the ore body modeling result based on the precise mine geospatial information. The results of ore body modeling based on mine geospatial information built through research can increase the ease of data interpretation and the accuracy of the calculated data, which will greatly increase the efficiency of work related to mineral resource development and mine damage prevention in the future.