• Title/Summary/Keyword: Three-dimensional hydraulic model

Search Result 173, Processing Time 0.025 seconds

Analysis of Hydraulic Characteristics Upstream of Dam and in Spillway Using Numerical Models (수치모형을 이용한 댐 상류 및 여수로 수리현상 해석)

  • Kim, Young-Han;Oh, Jung-Sun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.761-776
    • /
    • 2003
  • Numerical models were employed to investigate the hydrodynamics of water flow in the lake behind a dam and the spillway where supercritical flows and negative pressures are likely to occur. In this study, 2-D model, RMA2 was employed to examine the upstream flow pattern and 3-D CFD model, FLUENT was used to evaluate the three-dimensional flow in the approaching region and flow distributions in the spillways and discharge culverts. The bathymetry and the details of structures were carefully taken into consideration in building the models. The results from applying the 2-D model for the planned Hantan River Dam show that large eddies, the velocity of which reaches up to 1 m/s are occurring in several places upstream of the dam. That means that the 2-D numerical model could be utilized to investigate the two-dimensional flow patterns after the construction of a dam. Three-dimensional numerical results show that the approach flow varies depending on stages and discharge conditions, and velocities at spillways, discharge culverts, and sediment flushing tunnels are differently distributed. The velocity distributions obtained from the numerical model and a hydraulic model at the centerline of spillways 100 m upstream of the dam show reasonably similar results. It is expected that 2-D and 3-D numerical models ate useful tools to help optimize the dam design through investigating the flow patterns in the spillway and at the upstream of the dam, which is not always feasible in hydraulic modeling.

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator (라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석)

  • Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Predicting Dynamic Behaviors of Highway Runoff using A One-dimensional Kinematic Wave Model (일차원 kinematic wave 모형을 이용한 고속도로 강우 유출수의 동적 거동 예측)

  • Kang, Joo-Hyon;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.

Evaluation technique for efficiency of fishway based on hydraulic analysis (수리해석을 기반으로 어도 효율을 평가하는 기법)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.855-863
    • /
    • 2019
  • The efficiency of fishway installed in rivers can be directly evaluated by means of fish monitoring. On the other hand, when it is difficult to monitor the fish in certain conditions, or when planning a fishway, the efficiency can be evaluated indirectly through the hydraulic analysis. In this study, the hydraulic analysis technique for evaluating the efficiency of a fishway was presented. The River-2D model with the fish physical habitat module was used for the analysis of the attraction efficiency, and the weighted usable area was proposed as an index of the efficiency. In the analysis of passage efficiency, the three-dimensional model, Flow-3D, was used as an evaluation tool to describe the fluid behavior on a hydraulic structure with free surface. The ice-harbor type fishway at Baekgok weir in the Deokcheon River was selected as a test-site, and the efficiency was estimated using the hydraulic analysis. And then it was compared with fish monitoring data acquired from the river. As a result, it is difficult to replace the hydraulic analysis results with the efficiency quantitatively, but it can help to grasp the general tendency.

Three Dimensional Measurements of Pore Morphological and Hydraulic Properties (토양 공극 형태와 수문학적 특성에 대한 3 차원적 측정)

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Heck, Richard;Elliot, Tom;Ziska, Laise;Geaorge, Kate;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.415-423
    • /
    • 2010
  • Pore network models are useful tools to investigate soil pore geometry. These models provide quantitative information of pore geometry from 3D images. This study presents a pore network model to quantify pore structure and hydraulic characteristics. The objectives of this work were to apply the pore network model to characterize pore structure from large images to quantify pore structure, calculate water retention and hydraulic conductivity properties from a three dimensional soil image, and to combine measured hydraulic properties from experiments with calculated hydraulic properties from image. Soil samples were taken from a site located at the Baltimore science center, which is located inside of the city. Undisturbed columns were taken from the site and scanned with a computer tomographer at resolutions of 22 ${\mu}m$. Pore networks were extracted by medial-axis transformation and were used to measure pore geometry from one of the scanned samples. Water retention and unsaturated hydraulic conductivity values were calculated from the soil image. Properties of soil bulk density, water retention and unsaturated hydraulic conductivity were measured from three replicates of scanned soil samples. 3D image analysis provided accurate detailed pore properties such as individual pore volumes, pore length, and tortuosity of all pores. These data made possible to calculate accurate estimations of water retention and hydraulic conductivity. Combination of the calculated and measured hydraulic properties gave more accurate information on pore sizes over wider range than measured or calculated data alone. We could conclude that the hydraulic property computed from soil images and laboratory measurements can describe a full structure of intra- and inter-aggregate pores in soil.

Numerical Study on Three-Dimensional Flow in a Mixed-Flow Pump for Irrigation and Drainage (양배수용 사류펌프 내 삼차원 유동에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Ahn, Hyoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this paper, numerical study on a mixed-flow pump for irrigation and drainage has been performed based on three-dimensional viscous flow analysis. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code ANSYS CFX-11.0. A structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H/J-type grids in other regions. The numerical results were validated with experimental data for the heads and efficiencies at different flow coefficients. The efficiency at the design flow coefficient is evaluated with the variation of two geometric variables related to area of discharge and length of the vane in the diffuser. The results show that efficiency of the mixed-flow pump at the design flow coefficient is improved by the modifications of the geometry.

3D numerical model for wave-induced seabed response around breakwater heads

  • Zhao, H.Y.;Jeng, D.S.;Zhang, Y.;Zhang, J.S.;Zhang, H.J.;Zhang, C.
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.595-611
    • /
    • 2013
  • This paper presents a three-dimensional (3D) integrated numerical model where the wave-induced pore pressures in a porous seabed around breakwater heads were investigated. Unlike previous research, the Navier-Stokes equation is solved with internal wave generation for the flow model, while Biot's dynamic seabed behaviour is considered in the seabed model. With the present model, a parametric study was conducted to examine the effects of wave and soil characteristics and breakwater configuration on the wave-induced pore pressure around breakwater heads. Based on numerical examples, it was found that the wave-induced pore pressures at breakwater heads are greater than that beneath a breakwater. The wave-induced seabed response around breakwater heads become more important with: (i) a longer wave period; (ii) a seabed with higher permeability and degree of saturation; and (iii) larger angle between the incident waves and breakwater. Furthermore, the relative difference of wave-induced pore pressure between fully-dynamic and quasi-static solutions are larger at breakwater heads than that beneath a breakwater.