• Title/Summary/Keyword: Three-dimensional heat transfer

Search Result 385, Processing Time 0.038 seconds

Effect of Process Gas and Burner Gas Temperature on Reaction and Thermal Deformation Characteristics in a Steam Reformer (증기 개질기의 반응 및 열변형 특성에 미치는 공정가스와 버너가스 온도의 영향)

  • Han, Jun Hee;Kim, Ji Yoon;Lee, Jung Hee;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.126-132
    • /
    • 2016
  • This study numerically investigates the characteristics of chemical reactions and thermal deformation in a steam reformer. These phenomena are significantly affected by the high-temperature burner gas and the process gas conditions. Because the high temperature of the burner gas ranges from 800 to 1000 K, the reformer tubes undergo substantial thermal deformation, eventually resulting in structural failure. Thus, it is necessary to understand the characteristics of the reaction and thermal deformation under the operating conditions to evaluate the reformer tubes for sustainable, stable operation. Extensive numerical simulations were carried out using commercial CFD code (ANSYS FLUENT/MECHANICA Ver. 13.0) while considering three-dimensional turbulent flows and combined heat transfer including conduction, convection, and radiation. Structural analysis considering conjugated heat transfer between solid tubes and fluid flows was conducted using the Fluid-Solid Interaction (FSI) method. The results show that when the injection temperature of the process gas and burner gas decreased, the hydrogen production rate decreased significantly, and thermal deformation decreased by at least 15 to 20%.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Numerical Investigation on the Urea Melting Characteristics with Coolant and Electric Heaters (냉각수 및 전기 가열 방식에 따른 요소수 해동 특성에 관한 수치해석 연구)

  • Lee, Seung Yeop;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • A Urea-SCR(Selective Catalytic Reactor) system, which converts nitrogen oxides into nitrogen and water in the presence of a reducing agent, creates a major exhaust gas aftertreatment system for NOx reduction among other compounds. With regard to vehicle applications, a urea solution was chosen based on its eutectic composition of a 32.5wt% urea-water solution. An important advantage of this eutectic composition is that its melting point of $-11.7^{\circ}C$ is sufficiently low to avoid solidification in cold environments. However, the storage tanks must be heated separately in case of low ambient temperature levels to ensure a sufficient amount of liquid is available during scheduled start ups. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to understand the melting processes and heat transfer characteristics including liquid volume fraction, temperature distributions, and temperature profiles. The investigations were performed using Fluent 6.3 commercial software that modeled coolant and electric heater models based on a urea solution. It is shown that the melting performance with the electric heater is higher than a coolant heater and is more efficient.

Computational Thermo-Fluid Analysis for the Effects of Helium Injection Methods on Glass Fiber Cooling Process in an Optical Fiber Manufacturing System (광섬유 냉각장치의 헬륨 주입기 설계를 위한 전산열유동해석)

  • Park, Shin;Kim, Kyoungjin;Kim, Dongjoo;Park, Junyoung;Kwak, Ho Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • In a mass manufacturing system of optical fibers, the sufficient cooling of glass fibers freshly drawn from a draw furnace is essential, asinadequately cooled glass fibers can lead to poor resin coating on the fiber surface and possibly fiber breakage during the process. In order to improve fiber cooling at a high drawing speed, it is common to use a helium injection into a glass fiber cooling unit in spite of the high cost of the helium supply. The present numerical analysis carried out three-dimensional thermo-fluid computations of the cooling gas flow and heat transfer on moving glass fiber to determine the cooling performance of glass fiber cooling depending on the method of helium injection. The results showed that afront injection of helium is most effective compared to a uniform or rear injection for reducing air entrainment into the unit and thus cooling the glass fibers at a high fiber drawing speed. However, above a certain amount of injected helium, there was no more increase of the cooling effect regardless of the helium injection method.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

Effect of Heat Transfer and Phase Change of Coolant on the Performance of Mixed-gas Ejection System (냉각제의 분사조건 및 상변화가 혼합가스 사출시스템의 성능에 미치는 영향)

  • Kim, Hyun Muk;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.84-93
    • /
    • 2018
  • Three-dimensional (3D) numerical simulations have been carried out to study how coolant injection conditions influence the cooling efficiency and projectile ejection performance in a mixture-gas ejection system (or gas-steam launch system). The 3D single-phase computational model was verified using a 1D model constructed with reference to the previous research and then a two-phase flow computation simulating coolant injection on to hot gas was performed using a DPM (Discrete Phase Model). As a result of varying the coolant flow rate and number of injection holes, cooling efficiency was improved when the number of injection holes were increased. In addition, the change of the coalescence frequency and spatial distribution of coolant droplets caused by the injection condition variation resulted in a change of the droplet diameter, affecting the evaporation rate of coolant. The evaporation was found to be a critical factor in the design optimization of the ejection system by suppressing the pressure drop while the temperature decreases inside the breech.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature (고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석)

  • Lee, Jung-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.