Browse > Article
http://dx.doi.org/10.5762/KAIS.2016.17.9.126

Effect of Process Gas and Burner Gas Temperature on Reaction and Thermal Deformation Characteristics in a Steam Reformer  

Han, Jun Hee (Dept. of Mechanical Systems Engineering, Chung-Ang University)
Kim, Ji Yoon (Energy Safety Research Institute, Chung-Ang University)
Lee, Jung Hee (Technology Center Offshore Plant Industries, KRISO)
Lee, Seong Hyuk (Dept. of Mechanical Engineering, Chung-Ang University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.17, no.9, 2016 , pp. 126-132 More about this Journal
Abstract
This study numerically investigates the characteristics of chemical reactions and thermal deformation in a steam reformer. These phenomena are significantly affected by the high-temperature burner gas and the process gas conditions. Because the high temperature of the burner gas ranges from 800 to 1000 K, the reformer tubes undergo substantial thermal deformation, eventually resulting in structural failure. Thus, it is necessary to understand the characteristics of the reaction and thermal deformation under the operating conditions to evaluate the reformer tubes for sustainable, stable operation. Extensive numerical simulations were carried out using commercial CFD code (ANSYS FLUENT/MECHANICA Ver. 13.0) while considering three-dimensional turbulent flows and combined heat transfer including conduction, convection, and radiation. Structural analysis considering conjugated heat transfer between solid tubes and fluid flows was conducted using the Fluid-Solid Interaction (FSI) method. The results show that when the injection temperature of the process gas and burner gas decreased, the hydrogen production rate decreased significantly, and thermal deformation decreased by at least 15 to 20%.
Keywords
Chemical reaction; Computational Fluid Dynamics; Hydrogen; Steam reforming; Structure analysis; Thermal deformation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Lao et al, "CFD Modeling and Control of a Steam Methane Reforming Reactor", Chemical Engineering Science, 148, pp. 78-92, 2016. DOI: http://dx.doi.org/10.1016/j.ces.2016.03.038   DOI
2 M. Nikodemus, "Identifying Favorable Catalyst Design Features in Methane Steam Reforming Using Computational Fluid Dynamics", WORCESTER POLYTECHNIC INSTITUTE, 2013.
3 G. Dixon, M. Nijemeisland, "CFD as a Design Tool for Fixed-Bed Reactors", Industrial & Engineering Chemistry Research, 40, pp. 5246-5254, 2001. DOI: http://dx.doi.org/10.1021/ie001035a   DOI
4 M. N. Pedernera, J. Pina, D. O. Borio, and V. Bucala, "Use of a Heterogeneous Two-dimensional Model to Improve the Primary Steam Reformer Performance", Chemical Engineering Journal, 94, pp. 29-40, 2003. DOI: http://dx.doi.org/10.1016/S1385-8947(03)00004-4   DOI
5 M. Ni, "2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer", Energy Conversion and Management, 65, pp. 155-163, 2013. DOI: http://dx.doi.org/10.1016/j.enconman.2012.07.017   DOI
6 J. Lee, J. H. Han et al, "Characteristics of Heat Transfer and Chemical Reaction of Methane-Steam Reforming in a Porous Catalytic Medium", Journal of Mechanical Science and Technology, 30, pp. 473-481, 2016. DOI: http://dx.doi.org/10.1007/s12206-015-1252-1   DOI
7 C. G. Choi, T. Y. Chung, J. H. Nam and D. H. Shin, "A Comparative Study for Steam-Methane Reforming Reaction Analysis Model.", Transactional of the Korean Society of Mechanical Engineers B, 32, pp. 497-503, 2008. DOI: http://dx.doi.org/10.3795/KSME-B.2008.32.7.497   DOI
8 ANSYS Mechanical, "ANSYS Mechanical APDL Theory Reference; Version 13.0.", ANSYS Inc, Canonsburg, 2013.
9 A. Demirbas, Biofuels sources, "Biofuels Policy, Biofuel Economy and Global Biofuel Projections, Energy Conversion and Management. Manage, 49, pp. 2106-2116, 2008.   DOI
10 H. S. Roh, D. K. Lee, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Natural gas Steam Reforming for Hydrogen Production over Metal Monolite Catalyst with Efficient Heat-transfer", International Journal of Hydrogen Energy, 35, pp. 1613-1619, 2010. DOI: http://dx.doi.org/10.1016/j.ijhydene.2009.12.051   DOI
11 L. Basini, K. Aasberg-Petersen, A. Guarinoni, and M. Ostberg, "Catalytic Partial Oxidation of Natural Gas at Evlevated Pressure and Low Residence Time", Catalysis Today, 64, pp. 21-30, 2001. DOI: http://dx.doi.org/10.1016/S0920-5861(00)00504-6   DOI
12 M.H. Shariat, A. h. Faraji, A. Ashafriahy, M. M. Alipour, "In Advanced Creep Failure of H.P. Modified Reformer Tubes in an Ammonia Plant", The Journal of Corrosion Science and Engineering, 6, pp. 1-20, 2003.
13 A. Qi, S. Wang, C. Ni, and D. Wu, "Autothermal Reforming of Gasoline on Rh-based Monolithic Catalysts", International Journal of Hydrogen Energy, 32, pp. 981-991, 2007. DOI: http://dx.doi.org/10.1016/j.ijhydene.2006.06.072   DOI
14 H. Arbag, S. Yasyerli, N. Yasyerli, and C. Dogu, "Activity and Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane", International journal of Hydrogen Energy, 35, pp. 2296-2304, 2010. DOI: http://dx.doi.org/10.1016/j.ijhydene.2009.12.109   DOI
15 J. A. Liu, "Kinetics, Catalysis and Mechanism of Methane Steam Reforming", WPI Chemical Engineering Department, 2006.