DOI QR코드

DOI QR Code

Numerical Investigation on the Urea Melting Characteristics with Coolant and Electric Heaters

냉각수 및 전기 가열 방식에 따른 요소수 해동 특성에 관한 수치해석 연구

  • 이승엽 (전북대학교 항공우주공학과) ;
  • 김만영 (전북대학교 항공우주공학과)
  • Received : 2015.02.22
  • Accepted : 2015.11.08
  • Published : 2016.01.01

Abstract

A Urea-SCR(Selective Catalytic Reactor) system, which converts nitrogen oxides into nitrogen and water in the presence of a reducing agent, creates a major exhaust gas aftertreatment system for NOx reduction among other compounds. With regard to vehicle applications, a urea solution was chosen based on its eutectic composition of a 32.5wt% urea-water solution. An important advantage of this eutectic composition is that its melting point of $-11.7^{\circ}C$ is sufficiently low to avoid solidification in cold environments. However, the storage tanks must be heated separately in case of low ambient temperature levels to ensure a sufficient amount of liquid is available during scheduled start ups. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to understand the melting processes and heat transfer characteristics including liquid volume fraction, temperature distributions, and temperature profiles. The investigations were performed using Fluent 6.3 commercial software that modeled coolant and electric heater models based on a urea solution. It is shown that the melting performance with the electric heater is higher than a coolant heater and is more efficient.

환원제를 이용하여 배기가스 내의 NOx를 질소로 환원시키는 요소수 SCR 시스템은 다른 후처리 장치들 중에서 가장 효율적인 장치로 알려져 있다. 차량에 적용되는 SCR 장치는 32.5wt%의 공융혼합물을 이용한다. 이러한 혼합물의 가장 큰 장점 중의 하나는 $-11.7^{\circ}C$에서 얼기 때문에 추운 환경에서 응고를 피할 수 있다는 것이다. 한편, 이러한 추운 환경에서 시동시 필요한 수용액을 충분히 공급하기 위해서는 고체상을 가열해야 한다. 따라서 본 연구에서는 Fluent 상용코드를 이용하여 3차원 비정상 전산해석을 통한 냉각수 및 전기가열 방식에 따른 고체상 요소수의 시간에 따른 액상비 및 온도분포와 같은 해동 및 열전달 특성을 고찰하였다. 본 연구를 통하여 전기히터 가열 방식이 냉각수 방식보다 효율적임을 확인하였다.

Keywords

References

  1. Swaminathan, C. R. and Voller, V. R., 1992, "A General Enthalpy Method for Modeling Solidification Processes," Transaction of Metallurgical, Vol.23(B), pp. 651-664.
  2. Hong, Y. D. and Park, C. K., 2002, "Numerical Analysis on Phase-change of Pure Water by Using Moving Grid," Fall Conference Proceedings, KSME, pp. 1906-1911.
  3. Kang, K. G., Ryou, H. S. and Hur, N. K., 2003, "Numerical Analysis of Solidification and Melting Phase Change Using Modified PISO Algorithm," Transactions of KSCFE, Vol. 3, No. 8, pp. 12-20.
  4. Kim, H. K., Jeong, S., Hur, N., Lim, T. and Park, Y. S., 2007, "Numerical Analysis of Melting Process in a Water Tank for Fuel-cell Vehicle," Transactions of SAREK, Vol. 19, No. 8, pp. 585- 592.
  5. Hwang, J., Heo, H. and Lee, C., 2010, "The Thawing Characteristics of Frozen Urea Solution for Heating System Design of Urea-SCR System on Commercial Heavy Duty Vehicle," Annual Conference Proceedings, KSAE, pp. 1065-1069.
  6. Choi, B. C., Seo, C. K. and Myong, K. J., 2009, "Freezing and Melting Phenomena of Ureawater Solution for Diesel Vehicle SCR System," Transactions of KSPSE, Vol. 4, No. 13, pp. 5-10.
  7. Stefan, W., 2007, "Numerical Heat Transfer and Thermal Engineering of AdBlue(SCR) Tanks for Combustion Engine Emission Reduction," Applied Thermal Engineering, Vol. 27, pp. 1790-1798. https://doi.org/10.1016/j.applthermaleng.2007.01.008
  8. Gau, C. and Viskanta, R., 1986, "Melting and Solidification of a Pure Metal on a Vertical Wall," Journal of Heat Transfer, Vol. 108, pp. 174-181. https://doi.org/10.1115/1.3246884
  9. Ansys Inc., Release 12.0 User's Guide, Fluent, 2009.
  10. Egal, M., Budtova, T. and Navard, P., 2008, "The Dissolution of Microcrystalline Cellulose in Sodium Hydroxide-Urea Aqueous Solution," Cellulose, Vol. 15, pp. 361-370. https://doi.org/10.1007/s10570-007-9185-1