• 제목/요약/키워드: Three-dimensional finite element

검색결과 2,158건 처리시간 0.027초

비축대칭 압출 공정의 근사 3차원 유한 요소 해석 (A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process)

  • 신현우;김동원;김낙수
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석 (Numerical analysis of three-dimensional sloshing flow using least-square and level-set method)

  • 최형권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Three-Dimensional Finite Element Modeling for the Yellow Sea - Initial approach -

  • Suh, Seung-Won;M.G.G. Foreman
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1996년도 정기학술강연회 발표논문 초록집
    • /
    • pp.14-14
    • /
    • 1996
  • In order to understand the tidal hydrodynamics of the Yellow Sea and Parts of the East China Sea, we have developed a three-dimensional, fine resolution, nonlinear, harmonic finite element model. Major four tidal constituents, M$_2$, S$_2$, K$_1$ and O$_1$ are used as forcing along the open boundary. Due to the shallowness of the region, tidal results are strongly affected by the bottom roughness coefficients, especially for the quadratic form. (omitted)

  • PDF

원자로 신형핵연료 하단고정체 응력 해석 (Stress Analysis for Lower End Fitting of Advanced LWR Fuel)

  • 이상순;문연철;변영주;김형구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.139-145
    • /
    • 2002
  • In this study, the geometric modeling has been conducted for 2 models of lower end fitting of advanced LWR fuel using three-dimensional solid modeler, Solidworks. Then, the optimization and the three-dimensional stress analysis using the finite element method has been peformed. The evaluation for the mechanical integrity of 2 models has been peformed based on the stress distribution obtained from the finite element analysis.

  • PDF

고정밀 공작기계주축계의 열특성 해석에 관한 연구 (A Study on the Thermal Characteristics of a High Precision Machine Tool Spindle)

  • 김용길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.47-51
    • /
    • 1996
  • Unsteady-state temperature distributions and thermal deformations of a spindle system are studied in this paper. Three dimensional model is built for analysis, and the amount of heat generation of bearing and the thermal characteristic values including heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the termal boundary values. Numerical results are compared with the measured data. The results show that thermal deformations and temperature distributions of a high precision spindle system can be reasonably estimated using the three dimensional model and the finite element method.

  • PDF

$Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가 (Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint)

  • 박영철;오세욱;조용배
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • 제11권1호
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

Analysis of 3D wall building structures dynamic response

  • Chyzy, T.;Kretowska, J.;Miedzialowski, Cz.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.33-52
    • /
    • 2006
  • Three-dimensional description of building structure taking into consideration soil-structure interaction is a very complex problem and solution of this problem is often obtained by using finite element method. However, this method takes a significant amount of computational time and memory. Therefore, an efficient computational model based on subdivision of the structure into building elements such as wall and floor slab elements, plane and three-dimensional joints and lintels, that could provide accurate results with significantly reduced computational time, is proposed in this study for the analysis three-dimensional structures subjected to dynamic load. The examples prove the efficiency and the computing possibilities of the model.

Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

  • Asemi, Kamran;Salehi, Manouchehr;Sadighi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.1067-1089
    • /
    • 2014
  • In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.