• 제목/요약/키워드: Three-dimensional elasticity theory

검색결과 82건 처리시간 0.023초

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

적층판의 원통형 굽힘에 대한 횡방향 전단병형 (Transverse Shear Deformation in the Cylindrical Bending of Laminated Plates)

  • 이수용;박정선
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2696-2704
    • /
    • 2000
  • This paper presents a new laminated plate theory for the cylindrical bending of laminated plated. The theory assumes that in plane displacements vary exponentially through plate thickness. Analytical solutions are derived for simply supported plates subjected to transverse loading. The accuracy of the present theory is examined for unsymmetric laminates, and the numerical results are compared with three-dimensional elasticity solutions of Pagano. The present theory predicts displacements and stresses for very thick plates very accurately. In particular, transverse shear stresses obtained form constitutive equations are predicted very accurately.

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

Analysis of transversely isotropic hollow toroids using the semi-analytical DQM

  • Jiang, W.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.103-116
    • /
    • 2002
  • A solution based on the linear three-dimensional theory of elasticity is developed for vibration and elastostatic problems of hollow toroids. The theory is developed for transversely isotropic toroids of arbitrary thickness, and has the potential to validate some vehicle and aircraft tire models in the linear range. In the semi-analytical method that is adopted Fourier series are written in the circumferential direction, forming a set of two-dimensional problems. These problems are solved using the differential quadrature method. A commercial finite element program is used to determine alternative solutions. For validation both problems of vibration and elastostatics are considered. Finally results are determined for local surface loading problems, and conclusions are drawn.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

V노치 및 예리한 균열을 갖는 N 다변형 단면 입체 실린더의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Solid Cylinders of N-Sided Polygonal Cross-Section Having V-notches or Sharp Cracks)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.433-442
    • /
    • 2009
  • 본 연구는 V노치 또는 예리한 균열이 존재하는 N 다변형 단면 입체 실린더에 대한 새로운 3차원 진동 데이터를 제시한다. 본 논문에서는 수학적으로 완전한 대수삼각다항식과 V노치 선단을 따라 존재하는 3차원 응력특이도를 명확히 다루는 허용에지함수와 함께 Ritz방법이 적용된다. 응력특이도를 포함하는 다변형 입체 실린더의 정확한 고유진동수 및 모드형상을 얻기 위해서는 에지함수가 필요하다는 것이 수렴도 분석을 통하여 입증된다.

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.