Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.5.657

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect  

Dehsaraji, Maryam Lori (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Loghman, Abbas (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Steel and Composite Structures / v.34, no.5, 2020 , pp. 657-670 More about this Journal
Abstract
In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.
Keywords
thickness stretching effect; shear and normal deformation theory; free vibration analysis; length scale parameter; nonlocal theory;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimen-sional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015.   DOI
2 Soleimani, I., Tadi Beni, Y. and Dehkordi, M.B. (2018), "Finite element vibration analysis of nanoshell based on new cylindrical shell element", Struct. Eng. Mech., 65(1), 33-41. https://doi.org/10.12989/sem.2018.65.1.033.   DOI
3 Tadi Beni, Y. (2016b), "Size-dependent electro mechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mat. Syst. Str., 27, 2199-2215. https://doi.org/10.1177/1045389X15624798.   DOI
4 Tadi Beni, Y. (2016c), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011.   DOI
5 Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-106. https://doi.org/10.1016/j.compstruct.2014.09.065.   DOI
6 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124-130. https://doi.org/10.1063/1.2141648 .
7 Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular micro-plates based on the modified couple stress theory", Int. J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008.   DOI
8 Wang, K., Wang, B. and Kitamura, T. (2015), "A review on the application of modified continuum models in modeling and simulation of nanostructures", Acta Mech. Sinica, 32, 83-100. https://doi.org/10.1007/s10409-015-0508-4.
9 Ansari, R., Rouhi, H. and Sahmani, S. (2011),"Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int J Mech Sci., 53, 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010..   DOI
10 Ansari, R., Rouhi, H. and Rajabiehfard, R.. (2012), "Free vibration analysis of single-walled carbon nanotubes using semi-analytical finite element", Int J Comput Meth Eng Sci Mech., 13,1-8. https://doi.org/10.1080/15502287.2012.660234.   DOI
11 Alibeigloo, A. and Shaban, M. (2013),"Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2.   DOI
12 Arefi, M., Kiani, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezo magnetic face sheets resting on Pasternak's foundation via MCST", Sandw. Struct. Mater., https://doi.org/10.1177/1099636217734279.
13 Ansari, R., Sahmani, S. and Rouhi, H. (2011), "Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions", Phys. Lett. A, 375 ,1255-1263. https://doi.org/10.1016/j.physleta.2011.01.046.   DOI
14 Arash, B and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51, 303-313. https://doi.org/10.1007/978-3-319-01201-8_2.   DOI
15 Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos Part B-.Eng., 39(2), 292-303., https://doi.org/10.1016/j.compositesb.2007.01.005.   DOI
16 Yildirm V. (1999), "A numerical study on the free vibration of symmetric cross-ply laminated cylindrical helical springs", Appl. Mech., 66, 1040-1043. http://dx.doi:10.1115/1.2791780.   DOI
17 Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
18 Arefi, M and Zenkour, A.M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater, Res, Express., 3, 115704. https://doi.org/10.1088/2053-1591/3/11/115704.   DOI
19 Arefi, M. and Zenkour, A.M. (2017a), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071.   DOI
20 Arefi, M. and Zenkour, A.M. (2017c), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matter., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.   DOI
21 Arefi, M. and Zenkour, A.M. (2017d), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6.   DOI
22 Zhang, Y., Wang, C. and Tan, V. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106. https://doi.org/10.1016/j.ijengsci.2007.04.004.
23 Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Math.. Phys. Eng. Sci., https://doi.org/10.1098/rspa.2012.0214
24 Zhu, C.S., Fang, X.Q., Liu, J.X and Li, H.Y. (2017), "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Mech. - A/Solids, 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08. 001.   DOI
25 Zeighampour, H. and Tadi Beni, Y. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Phys. E, 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011.   DOI
26 Zeighampour, H. and Tadi Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85, 539-553. https://doi.org/10.1007/s00419-014-0929-8.   DOI
27 Zenkour, A.M. (2013), "Bending of FGM plates by a simplified four-unknown shear and normal deformations theory", Int. J. Appl. Mech., 5, 1-15,. https://doi.org/10.1142/S1758825113500208.   DOI
28 Areias, P., Rabczuk, T. and Msekh, M.A. (2016), "Phase-field analysis of finite-strain plates and shells including element Subdivision", Comput. Method. Appl. M., 312, 322-235. http://dx.doi.org/10.1016/j.cma.2016.01.020.   DOI
29 Arefi, M. and Zenkour, A.M. (2019), "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., 21(8), 2751-2778. https://doi.org/10.1177/1099636217723186.   DOI
30 Amiri, F., Millan, D., Shen, Y., Rabczuk, T. and Arroyo, M. (2014), "Phase-field modeling of fracture in linear thin shells", Theor. Appl. Fract. Mech., 69, 102-109., https://doi.org/10.1016/j.tafmec.2013.12.002   DOI
31 Baghani, M., MohammadSalehi, M. and Dabaghian, P.H. (2016), "Analytical couple-stress solution for size-dependent large-amplitude vibrations of FG tapered-nanobeams", Solids Struct., 13(1). http://dx.doi.org/10.1590/1679-78252175.
32 Belkorissat, I., Ahmed Houari, M.S., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., 18, 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.   DOI
33 Budarapu, P.R. Reinoso, J. and Paggi, M. (2017a), "Concurrently coupled solid shell-based adaptive multiscale method for fracture", Comput. Method. Appl. M., 319(1), 338-365. https://doi.org/10.1016/j.cma.2017.02.023.   DOI
34 Budarapu, P.R. and Rabczuk, T. (2017b), "Multiscale methods for fracture: A review". J. Ind. Inst. Sci., 97(3), 339-376. https://doi.org/10.1007/s41745-017-0041-5.   DOI
35 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. ttps://doi.org/10.1063/1.332803.   DOI
36 Budarapu, P.R., Gracie, R., Yang, S.W., Zhuang, X. and Rabczuk, T. (2014), "Efficient Coarse Graining in Multiscale Modeling of Fracture", Theor. Appl. Fract. Mech., 69, 126-143. https://doi.org/10.1016/j.tafmec.2013.12.004.   DOI
37 Chen, W.Q., Ying, J. and Yang, Q.D. (2008), "Free vibrations of transversely isotropic cylinders and cylindrical shells", Pressure Vessel Technol., 120(4). https://doi.org/10.1115/1.2842338.
38 Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101, 024305. https://doi.org/10.1063/1.2423140.   DOI
39 Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37, 9041-9051., https://doi.org/10.1016/j.apm.2013.04.022.   DOI
40 Daneshmand, F., Rafiei, M., Mohebpour, S. and Heshmati, M. (2013), "Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory", Appl. Math. Model., 37, 7983-8003. https://doi.org/10.1016/j.apm.2013.01.052.   DOI
41 Gurtin, M.E. and Murdoch, A. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.   DOI
42 Gurtin, M.E and Murdoch, A. (1978), "Surface stress in solids". Int. J. Solids Struct., 14, 431-440., .https://doi.org/10.1007/BF00261375   DOI
43 Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of kirchhoff plate", Comput. Mater. Continu., 59, 433-456. doi:10.32604/cmc.2019.06660.   DOI
44 Gurtin, M.E., Issmuller, W.E and Larche, J. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag., 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.   DOI
45 Ghavanloo, E. and Fazelzadeh, A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Mech. A/Solids, 41, 37-42., https://doi.org/10.1016/j.euromechsol.2013.02.003,   DOI
46 Gholami, R., Darvizeh, A., Ansari, A. and Sadeghi, F. (2016), "Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory", Mech. -A/Solids., 58,76-88., https://doi.org/10.1016/j.euromechsol.2016.01.014.   DOI
47 Hosseini Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607., https://doi.org/10.12989/scs.2018.26.5.607.   DOI
48 Lam, D., Yang, F., Chong, A., Wang, J and Tong, P. (2003) ,"Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51,1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
49 Javvaji, B., Budarapu, P.R., Paggi, M., Zhuang, X. and Rabczuk, T. (2018), "Fracture Properties of Graphene-Coated Silicon for Photovoltaics", Adv. Theory. Simulation., 1(12), 1800097, https://doi.org/10.1002/adts.201800097.   DOI
50 Koutsoumaris, C.C., et al. (2015), "Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes", AIP Publishing LLC., 3, 28-42., https://doi.org/10.1063/1.4938978.
51 Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Nguyen-Xuan, H., Bazilevs, Y and Rabczuk, T. (2017), "Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling", Comput. Method. Appl. M., 316, 1157-1178., http://dx.doi.org/10.1016/j.cma.2016.12.002.   DOI
52 Li, C., Liu, J.J., Cheng, M. and Fan, X.L. (2017), "Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces", Compos. Part B: Eng,, 116, 153-69., https://doi.org/10.1016/j.compositesb.2017.01.071.   DOI
53 Moradi-Dastjerdi, R., Pourasghar, A. and Foroutan, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method". Compos. Mater., 48(15)., https://doi.org/10.1177/0021998313491617.
54 Murmu, T., Adhikari, S and Wang, C.Y. (2011), "Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory". Physica E, 43, 1276-1280., https://doi.org/10.1016/j.physe.2011.02.017.   DOI
55 Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028.   DOI
56 Shojaeefard, M.H., Mahinzare, M., Safarpour, H., Ghadiri, M. and Googarchin, H. (2018), "Free vibration of an ultra-fast-rotating induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition", Appl. Math. Model., 61, 255-279. https://doi.org/10.1016/j.apm.2018.04.015.   DOI
57 Pradhan, S.C and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett., 373, 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030.   DOI
58 Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int J Eng Sci., 45, 288-307., https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
59 Rabczuk, T., Gracie, R., Song, J.H. and Belytschko, T. (2010), "Immersed particle method for fluid-structure interaction", Numer, Method Eng., 81, 48-71. 10.1002/nme.2670, 2010.   DOI
60 Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Meth. Eng., 72, 524-548. https://doi.org/10.1002/nme.2013.   DOI
61 Shaat, M and Abdelkefi, A. (2017), "New insights on the applicability of Eringen's nonlocal theory", Int J Mech Sci., 121, 67-75., https://doi.org/10.1016/j.ijmecsci.2016.12.013.   DOI
62 She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijmecsci.2016.12.013.   DOI
63 Safaei, B., Moradi-Dastjerdi, R., Qin, Z.H. and Chu, F. (2018), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 18, 148-176. https://doi.org/10.1016/j.compositesb.2018.10.049.