• Title/Summary/Keyword: Three-dimensional axisymmetric

검색결과 112건 처리시간 0.024초

3차원 물체에 작용하는 유체동력학적 충격하중추정 (Prediction of Hydodynamic Impact Loads on Three-Dimensional Bodies)

  • ;강창구
    • 대한조선학회지
    • /
    • 제27권3호
    • /
    • pp.73-88
    • /
    • 1990
  • 본 논문에서는 이론적인 방법과 실험적인 방법에 의해서 구와 플레어 형상을 갖는 축대칭 물체와 같이 3차원 물체에 대한 충격력을 검토하였다. 플레어 형상을 갖는 축대칭물체는 선수와 유사한 형상을 갖고 있다. 플레어 형상물체는 연직운동에 대한 것만을 검토한 반면 구에 대해서는 연직운동만이 아니라 사각 충격에 대해서도 검토하였다. 다이폴분포와 등포텐시얼 자유표면문제를 푼 계산결과와 실험결과를 비교하였다. 경계치문제는 알려진 내부유동을 사용함으로써 계산시간을 단축하였다. 이론과 실험의 비교로부터 물체형상에 따라 최대 충격력의 이론추정치는 실험치보다 더 크거나 작을 수 있다는 것을 보여주고 있다. 그러나, 이론치가 실용적으로 사용될 수 있음을 보여주고 있다.

  • PDF

Investigation on the effect of eccentricity for fuel disc irradiation tests

  • Scolaro, A.;Van Uffelen, P.;Fiorina, C.;Schubert, A.;Clifford, I.;Pautz, A.
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1602-1611
    • /
    • 2021
  • A varying degree of eccentricity always exists in the initial configuration of a nuclear fuel rod. Its impact on traditional LWR fuel is limited as the radial gap closes relatively early during irradiation. However, the effect of misalignment is expected to be more relevant in rods with highly conductive fuels, large initial gaps and low conductivity filling gases. In this paper, we study similar characteristics in the experimental setup of two fuel disc irradiation campaigns carried out in the OECD Halden Boiling Water Reactor. Using the multi-dimensional fuel performance code OFFBEAT, we combine 2-D axisymmetric and 3-D simulations to investigate the effect of eccentricity on the fuel temperature distribution. At the same time, we illustrate how the advent of modern tools with multi-dimensional capabilities might further improve the design and interpretation of in-pile separate-effect tests and we outline the potential of such an analysis for upcoming experiments.

타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(II) (An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die(II))

  • 배원락;박동환;박상봉;강성수
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.9-17
    • /
    • 2002
  • The study is insufficient on process planning of the elliptical deep drawing product. Thus, in this present study, the expert system for elliptical deep drawing products was constructed by using process sequence design. The expert system was developed to be based on the general concept of each entity. The system was developed in this work consists of sixth modules. The first one is a shape recognition module to recognize non-axisymmetric products and to generate Entity_list. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create suggested blanks of three shapes with the identical surface area. The fourth one is shape design module based on the production rules that play the most important role in an expert system for manufacturing. The production rules are generated and upgraded by inter- viewing field engineers, plastic theory and experiments. The fifth and sixth ones are a graphic module to visualize results of the expert system and a post module to rise user's convenience, respectively. According to constructed the expert system for process sequence design, it was possible to reduce the lead time.

H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석 (Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow)

  • 오종식;조강래
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.

3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션 (Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface)

  • 박성주;이강수;정준모
    • 한국해양공학회지
    • /
    • 제30권6호
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.

유동 방향 변화에 따른 잠수함 주위의 3차원 점성유동 해석과 공기역학적 계수의 변화 (Viscous Flow Analysis of a Submarine with Variation of Angle of Attack and Yaw Angle)

  • 장진호;박원규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.189-192
    • /
    • 2002
  • In this paper, the submarine model, called DARPA SUBOFF model, has been numerically analyzed to investigate the aerodynamic forces variation in terms of angle of attacks and yaw angles. The SUBOFF model is consisted of the three parts : axisymmetric body, fairwater, and four symmetric stern appendages. Three dimensional unsteady incompressible Wavier-Stokes equation was used on curvilinear multi-block grid system. To validate the present code, the SUBOFF tare hull and an ellipsoid at angle of attacks of $10^{\circ}\;and\;30^{\circ}$ were simulated and a good agreement with experiments was obtained. After the code validation, the flows over SUBOFF model were simulated at three different angle of attacks and yaw angles. The variation of aerodynamic forces in terms of angle of attack and yaw angle were calculated. Also, to understand the flow features around a submarine with variation of yaw and attack angle, the pressure contours and streamlines were plotted.

  • PDF

임의물체 주위의 3차원 격자생성 (The Tree-Dimensional Grid Generation of Arbitrary Body)

  • 맹주성;손병진
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.189-196
    • /
    • 1990
  • 본 연구에서는 THOMPSON의 방법과는 달리 경계에서 부여된 metric scale fac- tor에 의해서 동적으로 제어되는 제어함수법과 경계에서 Neumann조건을 적용하여, 제 어함수와 비직교성의 문제를 해결하는 새로운 방법을 소개하고, 3차원 단연결영역(si- mply-conneted region)의 실제적이고 관심있는 영역, 즉, 축대칭 물체(axisymmetric body), 익형 물체(wing body), 확대 곡관(diffusing curved duct), 90도 곡관(90 deg. elbow turn)에 대하여 격자생성을 하였다.

Development of a Three-Dimensional DNS Code for Study of Clean Agents -Two-Dimensional Simulation of Diluted Nonpremixed Counterflow Flames-

  • Park, Woe Chul;Hamins, A.
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.18-23
    • /
    • 2002
  • A mixture fraction formulation is used to numerically simulate the structure of diluted axisymmetric methane-air nonpremixed counterflow flames. The effects of global strain rate and gravity wert! investigated and results were compared. Fuel of a mixture of 20% methane and 80% nitrogen by volume and oxidizer of pure air at low and moderate global strain rates $a_g= 20, 40, 80 s^{-1}$ in normal and zero gravity were computed. It is shown that the numerical method is capable of predicting the structure of counterflow flames in normal and microgravity environments at low and moderate global strain rates.

유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석 (Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method)

  • 원성연;이향범;신영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

3차원 브레이크 디스크 모델의 온도 분포와 열응력 시뮬레이션에 관한 연구 (Temperature Field and Thermal Stress Simulation of Solid Brake Disc Based on Three-dimensional Model)

  • 황평;서희창;우쉔
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.31-36
    • /
    • 2010
  • The brake system is an important part of the automobile safety system. The disc brake system is divided into two parts: a rotating axi-symmetrical disc, and the stationary pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperatures during the braking process. The frictional heat source (the pads) is moving on the disc and the location is time-dependent. Our study applies a moving heat source, which is defined by the time and space variable on the frictional surface, in order to simulate the frictional heat behavior accurately during the braking process. The object of the present work is the determination of the temperature distribution and thermal stress in the solid disc by non-axisymmetric 3D modeling for repeated braking.