Acknowledgement
This work has been partially supported by the ENEN + project that has received funding from the Euratom research and training Work Programme 2016-2017 - 1 #755576. This work has been partially supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID sm34.
References
- M.D. Goldberg, An Investigation into the Effect of Fuel Pellet Eccentricity on Fuel-Cladding Gap Heat Transfer, Georgia Institute of Technology, 1974.
- R.E. Williford, C.R. Hann, Effects of Fill Gas Composition and Pellet Eccentricity, 1977, https://doi.org/10.2172/5370475. United States N. p.
- S. Yanagihara, S. Shiozawa, S. Saito, Effect of fuel pellet eccentricity with cladding on fuel rod thermal behavior under reactivity initiated accident condition, J. Nucl. Sci. Technol. 19 (6J) (1982) 469-481, https://doi.org/10.1080/18811248.1982.9734170.
- O. McNary, T.H. Bauer, The effect of asymmetric fuel-clad gap conductance on fuel pin thermal performance, Nucl. Eng. Des. (1981), https://doi.org/10.1016/0029-5493(81)90015-7.
- P.A.B. Desampaio, M.D.L. Moreira, J.C.A. Gaspar, The effect of eccentricity in the position of UO2 pellets, Prog. Nucl. Energy 69 (2013) 23-28, https://doi.org/10.1016/j.pnucene.2013.06.007.
- J.D. Hales, S.R. Novascone, G. Pastore, D.M. Pe, BISON Theory Manual the Equations behind Nuclear Fuel, 2013, https://doi.org/10.2172/1107264.
- J.D. Hales, D.M. Perez, R.L. Williamson, S.R. Novascone, B.W. Spencer, Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets, United States: N. p., 2013. Web.
- R.L. Williamson, et al., Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (May 2016) 232-244, https://doi.org/10.1016/J.NUCENGDES.2016.02.020.
- K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. (1992), https://doi.org/10.1016/0022-3115(92)90487-6.
- H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. (1998), https://doi.org/10.1063/1.168744.
- C. Fiorina, I. Clifford, M. Aufiero, K. Mikityuk, GeN-Foam: a novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors, Nucl. Eng. Des. (2015), https://doi.org/10.1016/j.nucengdes.2015.05.035.
- C. Fiorina et al., "An initiative for the development and application of open-source multi-physics simulation in support of R&D and E&T in nuclear science and technology," in Physor 2020 Conference. 29th March - 2nd April 2020, Cambridge, UK., [Online]. Available: https://drive.google.com/file/d/1D8NldONAVPfiCql10t2YKgoooqgyePna/view...
- D.L. Hagrman, G.A. Reymann, MATPRO-version 11: a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, 1979, https://doi.org/10.2172/6442256.
- G.A. Berna, C.E. Beyer, K.L. Davis, D.D. Lanning, FRAPCON-3: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, Idaho national engineering and environmental laboratory , NUREG/CR-6534, Off. Nucl. Regul. Res. NUREG/CR-7022 2 (c) (1997).
- A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, The OFFBEAT multi-dimensional fuel behavior solver, Nucl. Eng. Des. 358 (2020), https://doi.org/10.1016/j.nucengdes.2019.110416.
- M. Kinoshita, et al., HBRP - Final Report, CRIEPI, Mar 2001.
- H. M. M. Kinoshita, S. Kitajima, T. Kameyama, T. Matsumura, E.Kolstad, "High Burnup Rim Project, progress of irraiation and preliminary analysis," in Proceedings, International Topical Meeting on Light Water Reactor Fuel Performance.
- K. Sakai, "The Fuel Creep Test IFA-701: Results after Four Irradiation Cycles," vol. HWR-1039..
- K. Lassmann, A. Schubert, J. Van De Laar, P. Van Uffelen, The 'Fuel Rod Analysis ToolBox': a general program for preparing the input of a fuel rod performance code, Ann. Nucl. Energy 81 (Jul. 2015) 332-335, https://doi.org/10.1016/j.anucene.2015.03.012.
- P. Cardiff, A. Karac, A. Ivankovic, Development of a finite volume contact solver based on the penalty method, Comput. Mater. Sci. (2012), https://doi.org/10.1016/j.commatsci.2012.03.011.
- P. Cardiff, Development of the Finite Volume Method for Hip Joint Stress Analysis, PhD Thesis, Sch. Mech. Mater. Eng. Univ. Coll. Dublin, 2012.
- Z. Tukovic, A. Ivankovic, A. Karac, Finite-volume stress analysis in multi-material linear elastic body, Int. J. Numer. Methods Eng. 93 (4) (2013) 400-419, https://doi.org/10.1002/nme.4390.
- A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, Cladding plasticity modeling with the multidimensional fuel performance code OFFBEAT, TopFuel 2019 (2019).
- C. Gyoria, M. Jonsonb, G. Robertsonb, P. Blairb, A. Schubertc, P. Van Uffelen, Extension and validation of the TRANSURANUS code in the course of the ESSANUF project, in: 12th International Conference on WWER Fuel Performance, Modelling and Experimental Support, INRNE, Nessebar, Bulgaria, 2017.
- I. Clifford, M. Pecchia, R. Mukin, C. Cozzo, H. Ferroukhi, A. Gorzel, Studies on the effects of local power peaking on heat transfer under dryout conditions in BWRs, Ann. Nucl. Energy (2019), https://doi.org/10.1016/j.anucene.2019.03.017.
- H.C. Kim, S.K. Seo, S.U. Lee, Y.S. Yang, Development of NUFORM3D module with FRAPCON3.4 for simulation of pellet-cladding mechanical interaction, Nucl. Eng. Des. 318 (Jul. 2017) 61-71, https://doi.org/10.1016/J.NUCENGDES.2017.03.035.