Browse > Article
http://dx.doi.org/10.1016/j.net.2020.11.003

Investigation on the effect of eccentricity for fuel disc irradiation tests  

Scolaro, A. (Ecole Polytechnique Federale de Lausanne (EPFL))
Van Uffelen, P. (Joint Research Center (JRC))
Fiorina, C. (Ecole Polytechnique Federale de Lausanne (EPFL))
Schubert, A. (Joint Research Center (JRC))
Clifford, I. (Paul Scherrer Institut (PSI))
Pautz, A. (Ecole Polytechnique Federale de Lausanne (EPFL))
Publication Information
Nuclear Engineering and Technology / v.53, no.5, 2021 , pp. 1602-1611 More about this Journal
Abstract
A varying degree of eccentricity always exists in the initial configuration of a nuclear fuel rod. Its impact on traditional LWR fuel is limited as the radial gap closes relatively early during irradiation. However, the effect of misalignment is expected to be more relevant in rods with highly conductive fuels, large initial gaps and low conductivity filling gases. In this paper, we study similar characteristics in the experimental setup of two fuel disc irradiation campaigns carried out in the OECD Halden Boiling Water Reactor. Using the multi-dimensional fuel performance code OFFBEAT, we combine 2-D axisymmetric and 3-D simulations to investigate the effect of eccentricity on the fuel temperature distribution. At the same time, we illustrate how the advent of modern tools with multi-dimensional capabilities might further improve the design and interpretation of in-pile separate-effect tests and we outline the potential of such an analysis for upcoming experiments.
Keywords
Fuel performance; Finite volume; Three-dimensional; Fuel disc irradiation; Thermomechanics; Fuel eccentricity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Sakai, "The Fuel Creep Test IFA-701: Results after Four Irradiation Cycles," vol. HWR-1039..
2 P. Cardiff, A. Karac, A. Ivankovic, Development of a finite volume contact solver based on the penalty method, Comput. Mater. Sci. (2012), https://doi.org/10.1016/j.commatsci.2012.03.011.   DOI
3 P.A.B. Desampaio, M.D.L. Moreira, J.C.A. Gaspar, The effect of eccentricity in the position of UO2 pellets, Prog. Nucl. Energy 69 (2013) 23-28, https://doi.org/10.1016/j.pnucene.2013.06.007.   DOI
4 S. Yanagihara, S. Shiozawa, S. Saito, Effect of fuel pellet eccentricity with cladding on fuel rod thermal behavior under reactivity initiated accident condition, J. Nucl. Sci. Technol. 19 (6J) (1982) 469-481, https://doi.org/10.1080/18811248.1982.9734170.   DOI
5 A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, Cladding plasticity modeling with the multidimensional fuel performance code OFFBEAT, TopFuel 2019 (2019).
6 C. Gyoria, M. Jonsonb, G. Robertsonb, P. Blairb, A. Schubertc, P. Van Uffelen, Extension and validation of the TRANSURANUS code in the course of the ESSANUF project, in: 12th International Conference on WWER Fuel Performance, Modelling and Experimental Support, INRNE, Nessebar, Bulgaria, 2017.
7 I. Clifford, M. Pecchia, R. Mukin, C. Cozzo, H. Ferroukhi, A. Gorzel, Studies on the effects of local power peaking on heat transfer under dryout conditions in BWRs, Ann. Nucl. Energy (2019), https://doi.org/10.1016/j.anucene.2019.03.017.   DOI
8 H.C. Kim, S.K. Seo, S.U. Lee, Y.S. Yang, Development of NUFORM3D module with FRAPCON3.4 for simulation of pellet-cladding mechanical interaction, Nucl. Eng. Des. 318 (Jul. 2017) 61-71, https://doi.org/10.1016/J.NUCENGDES.2017.03.035.   DOI
9 M.D. Goldberg, An Investigation into the Effect of Fuel Pellet Eccentricity on Fuel-Cladding Gap Heat Transfer, Georgia Institute of Technology, 1974.
10 R.E. Williford, C.R. Hann, Effects of Fill Gas Composition and Pellet Eccentricity, 1977, https://doi.org/10.2172/5370475. United States N. p.
11 O. McNary, T.H. Bauer, The effect of asymmetric fuel-clad gap conductance on fuel pin thermal performance, Nucl. Eng. Des. (1981), https://doi.org/10.1016/0029-5493(81)90015-7.   DOI
12 J.D. Hales, S.R. Novascone, G. Pastore, D.M. Pe, BISON Theory Manual the Equations behind Nuclear Fuel, 2013, https://doi.org/10.2172/1107264.   DOI
13 J.D. Hales, D.M. Perez, R.L. Williamson, S.R. Novascone, B.W. Spencer, Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets, United States: N. p., 2013. Web.
14 R.L. Williamson, et al., Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (May 2016) 232-244, https://doi.org/10.1016/J.NUCENGDES.2016.02.020.   DOI
15 K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. (1992), https://doi.org/10.1016/0022-3115(92)90487-6.   DOI
16 D.L. Hagrman, G.A. Reymann, MATPRO-version 11: a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, 1979, https://doi.org/10.2172/6442256.
17 M. Kinoshita, et al., HBRP - Final Report, CRIEPI, Mar 2001.
18 H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. (1998), https://doi.org/10.1063/1.168744.   DOI
19 G.A. Berna, C.E. Beyer, K.L. Davis, D.D. Lanning, FRAPCON-3: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, Idaho national engineering and environmental laboratory , NUREG/CR-6534, Off. Nucl. Regul. Res. NUREG/CR-7022 2 (c) (1997).
20 A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, The OFFBEAT multi-dimensional fuel behavior solver, Nucl. Eng. Des. 358 (2020), https://doi.org/10.1016/j.nucengdes.2019.110416.   DOI
21 H. M. M. Kinoshita, S. Kitajima, T. Kameyama, T. Matsumura, E.Kolstad, "High Burnup Rim Project, progress of irraiation and preliminary analysis," in Proceedings, International Topical Meeting on Light Water Reactor Fuel Performance.
22 K. Lassmann, A. Schubert, J. Van De Laar, P. Van Uffelen, The 'Fuel Rod Analysis ToolBox': a general program for preparing the input of a fuel rod performance code, Ann. Nucl. Energy 81 (Jul. 2015) 332-335, https://doi.org/10.1016/j.anucene.2015.03.012.   DOI
23 P. Cardiff, Development of the Finite Volume Method for Hip Joint Stress Analysis, PhD Thesis, Sch. Mech. Mater. Eng. Univ. Coll. Dublin, 2012.
24 C. Fiorina et al., "An initiative for the development and application of open-source multi-physics simulation in support of R&D and E&T in nuclear science and technology," in Physor 2020 Conference. 29th March - 2nd April 2020, Cambridge, UK., [Online]. Available: https://drive.google.com/file/d/1D8NldONAVPfiCql10t2YKgoooqgyePna/view...
25 Z. Tukovic, A. Ivankovic, A. Karac, Finite-volume stress analysis in multi-material linear elastic body, Int. J. Numer. Methods Eng. 93 (4) (2013) 400-419, https://doi.org/10.1002/nme.4390.   DOI
26 C. Fiorina, I. Clifford, M. Aufiero, K. Mikityuk, GeN-Foam: a novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors, Nucl. Eng. Des. (2015), https://doi.org/10.1016/j.nucengdes.2015.05.035.   DOI