• Title/Summary/Keyword: Three-dimensional Printing

Search Result 262, Processing Time 0.027 seconds

A Study of SFFS for Office Type using Three-dimensional Printing Process (3DP 공정을 이용한 오피스용 임의형상 제작시스템 에 관한 연구 (SFFS))

  • 이원희;김동수;이택민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1128-1131
    • /
    • 2004
  • SFF(solid freeform fabrication) is another name of RP(rapid prototyping). The SFFS for office type wishes to develop system that can produce small object such as hand phone, cup, accessory etc. with high speed, and also intend suitable system in office environment by compact design, and buy easily by inexpensive price. As can manufacture high speed in existent SFF process technology, representative process that have competitive power in price is 3DP (three dimensional printing) technology. The 3DP technology is way to have general two dimensional printing technology and prints to three dimension, is technology that make three-dimensional solid freeform that want binder doing jetting selectively on powder through printer head. We designed and manufactured SFFS for office based on 3DP process technology design and manufactured, and composed head system so that use 3 printer heads at the same time to improve the fabrication speed of system. We used printer head of INCJET company and cartridge used HP45 series model who can buy easily in general city. And we directly fabricated three dimensional solid freeform using developed SFFS for office type.

  • PDF

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Utility of three-dimensional printing in the surgical management of intra-articular distal humerus fractures: a systematic review and meta-analysis of randomized controlled trials

  • Vishnu Baburaj;Sandeep Patel;Vishal Kumar;Siddhartha Sharma;Mandeep Singh Dhillon
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74-19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45-60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes.

Evaluation of flexural properties and reliability with photo-curing 3D printing resin according to the printing orientations (광경화성 3D 프린팅 레진의 출력각도에 따른 굽힘 특성과 신뢰성 평가)

  • Im, Yong-Woon;Song, Doo-Bin;Hwang, Seong-Sig;Kim, Sa-Hak;Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • Purpose: This study aimed to compare the flexural properties and perform the Weibull analysis of photo-curing three-dimensional (3D) printing resin. Methods: Photo-curing temporary resin (3D polymer) was used as a printing resin. Specimens (65 × 10 × 3.3 ㎣) were prepared following the ISO 20975-1 guidelines and according to the different printing orientations using a digital light processing 3D printer (D2 120; Dentium). The flexural strength (FS), flexural modulus, and work of fracture (WOF) were measured using a universal testing machine (Instron 3344; Instron) at a crosshead speed of 5 mm/min. Results: In this study, the 0° orientation exhibited higher FS and WOF than the 45° orientation. Significant differences were found among the printing orientations (p<0.05). Specimens printed at the 0° orientation were the most accurate. In the Weibull analysis, 0° showed the greatest Weibull modulus (m), which represents a higher reliability. Conclusion: 3D printing should be selected and used by considering flexural properties, size accuracy, and reliability.

investigation of process parameter influence on 3D surface coloring (3 차원 표면의 컬러 인쇄를 위한 공정 변수 영향 분석에 관한 연구)

  • 송민섭;이상호;김효찬;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1390-1393
    • /
    • 2004
  • In the present industry, three-dimensional colored shape has required for realistic prototype in rapid manufacturing. Z-corporation developed 3D printer which can color three-dimensional prototype but this process can't be adopted to other rapid prototype products and spend much time and cost coloring 3D shape. In this study a new coloring process on three-dimensional surface is proposed for realistic prototype. Three-dimensional surface coloring apparatus is composed of HP ink jet head and X-Y plotter. Distance and angle between ink jet nozzle and 3D surface are set as process parameter. Based on the experiment of process parameters, it is shown that distance and angle affected on printed image on 3D surface. Circle and line shape are chosen as standard image shape because the shape has widely used as standard in 2D printing. Consequently, the distorted image on 3D surface is corrected by transformed input image data.

  • PDF

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.

3-Dimensional Printing for Mesh Types of Short Arm Cast by Using Computed Tomography (전산화단층영상을 이용한 그물형 손목 부목의 3D 프린팅)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.308-315
    • /
    • 2015
  • The purpose of this study, using 3D printer, was tried to fabricate the short arm cast of mesh types that can be hygienic and adequate ventilation with a good radiography. We used the multi channel computed tomography (MDCT) with three dimension printer device of the fused deposition modeling (FDM) techniques. The material is used a degradable plastic (poly lactic acid, PLA). Three-dimensional images of the short arm were obtained in the MDCT and then make the three-dimensional volume rendering. Three dimension volume rendering of the short arm is implemented as a tomography obtained in MDCT. Virtual mesh type cast model was output as three-dimensional images is designed based on the three-dimensional images of the short arm. As a results, the cast output by 3D printers were able to obtain excellent radiograph images than the conventional cast, and then it can decreased itching with unsanitary, and can break down easily to the cast. In conclusion, the proposed virtual mesh type cast output by 3D printers could be used as a basis for future three-dimensional printing cast productions and offered help to patients in the real life.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.