포인트 클라우드 콘텐츠는 실제 환경 및 물체를 3차원 위치정보를 갖는 점들과 그에 대응되는 색상 등을 획득하여 기록한 실감 콘텐츠이다. 위치와 색상 정보로 구성된 3차원 점으로 이루어진 포인트 클라우드 콘텐츠는 확대하여 렌더링 할 경우 점과 점 사이의 간격이 벌어지면서 빈 구멍이 발생하게 된다. 본 논문에서는 포인트 클라우드 확대 시 점들 간 간격이 벌어져 생기는 구멍을 찾고 구멍에 대해 깊이정보를 활용한 역 변환 기반 보간 방법을 통해 포인트 클라우드 콘텐츠 품질을 개선하는 방법을 제안한다. 영상의 확대나 카메라 근접 등으로 포인트들의 간격이 벌어지면 틈이 생기면서 구멍 사이에 뒷면의 포인트들이 렌더링 되어 보간 방법을 적용하는데 방해요소로 작용한다. 이를 해결하기 위해 포인트 클라우드의 뒷면에 해당하는 점들을 제거한다. 다음으로 빈 구멍이 발생한 시점의 깊이 맵(depth map)을 추출한다. 마지막으로 역 변환을 하여 원본의 데이터에서 픽셀을 추출한다. 제안하는 방법으로 콘텐츠를 렌더링한 결과, 기존의 크기를 늘려 빈 영역을 채우는 방법에 비해 렌더링 품질이 평균 PSNR 측면에서 1.2 dB 향상된 결과를 보였다.
Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.
Erdenebat, Munkh-Uchral;Kwon, Ki-Chul;Dashdavaa, Erkhembaatar;Piao, Yan-Ling;Yoo, Kwan-Hee;Baasantseren, Ganbat;Kim, Youngmin;Kim, Nam
Journal of the Optical Society of Korea
/
제18권6호
/
pp.706-713
/
2014
An enhanced 360-degree integral-floating three-dimensional display system using a hexagonal lens array and a hidden point removal operator is proposed. Only the visible points of the chosen three-dimensional point cloud model are detected by the hidden point removal operator for each rotating step of the anamorphic optics system, and elemental image arrays are generated for the detected visible points from the corresponding viewpoint. Each elemental image of the elemental image array is generated by a hexagonal grid, due to being captured through a hexagonal lens array. The hidden point removal operator eliminates the overlap problem of points in front and behind, and the hexagonal lens array captures the elemental image arrays with more accurate approximation, so in the end the quality of the displayed image is improved. In an experiment, an anamorphic-optics-system-based 360-degree integral-floating display with improved image quality is demonstrated.
터널의 페이스매핑(face mapping)을 신속하고 신뢰성 있게 수행하기 위하여 디지털 사진으로부터 3차원 좌표의 점군(point cloud)을 생성하고 이로부터 절리면의 방향과 간격 및 암질지수(R.Q.D), 절리면 거칠기 등을 분석하였다. 분석결과를 공학적 암반분류 방법인 RMR(Rock Mass Rating)과 Q 시스템에 입력하여 보강방법을 결정하고 터널을 시공하였다. 그 결과 터널 페이스매핑 작업의 안전성을 높이면서, 분석부터 보강작업까지의 시간을 절약하였다. 또 터널 막장면의 디지털 영상과 공학적 암반분류용 정보를 객관적으로 평가하고 필요 시재분석이 가능하도록 보존함으로써 보강등급 결정과 터널보강 방법의 신뢰도를 높였다.
Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.
실내에서 카메라를 이용한 로봇 응용이나 가상현실(Virtual Reality) 응용의 경우 평면을 찾고 추정하는 기술은 매우 중요한 기술이다. RGB-D 카메라의 경우 실내의 평면에서 질감 정보가 없는 평면에서도 3차원 관측 데이터를 얻을 수 있지만, 이미지 영역에서 점군 데이터(Point-cloud Data)를 처리하기 위해서는 많은 연산량이 필요하다. 더군다나 현재 관측되고 있는 평면의 개수가 몇 개인지 미리 알 수 없으며, 평면으로 검출(Plane Detection) 하더라도 강인하게 3차원에서 평면을 추정(Plane Estimation)하려면 추가적인 연산이 필요하다. 본 논문에서는 연속 데이터를 이용해 실시간으로 평면의 개수를 선택하며 평면을 추정하는 방법을 제시하고자 한다. 실험 결과를 통해 제안하는 방법이 전체 데이터를 처리하는 것에 비해 약 22배의 속도 개선을 가져 올 수 있음을 보였다.
영상레이더(SAR)에서 인공표적에 대한 모델링은 주로 3차원 CAD(Computer Aided Design) 모델의 면(face) 및 모서리(edge)에서 반사되는 레이더 신호를 광선추적(ray-tracing) 방식으로 시뮬레이션하고 있고, 지구 표면의 클러터(clutter)에 대한 모델링은 영상레이더 이미지 자체에 대한 통계학적(statistical) 분석을 통해 분포(distribution) 특성이 유사한 종류들을 구분하는 방식을 사용하고 있다. 본 논문에서는 지상의 인공표적 및 지표면의 배경 클러터를 3차원 점구름(point cloud) 산란점(scatterer point) 모델로 만들고 두 개의 모델이 통합된 상황에서 계산적(computational)인 신호처리 과정을 통해 영상 레이더 이미지를 생성하였으며, 이것을 실제 차량탑재형 영상레이더 시스템의 스트립맵(stripmap) 이미지 생성 결과 및 전자기적(EM) 모델링 또는 통계학적 분포 모델을 사용하여 분석한 결과와 유사한 지 비교해 보았다. 모델링 대상은 지상의 인공표적인 교량(다리)을 선정 했는데, 그 이유는 교량의 경유 주변에 수면과 지면이 같이 존재하는 특성이 있고 또한 군사용 및 민간용 활용에서 모두 관심이 많은 표적이기 때문이다.
본 논문에서는 자율협력주행을 위한 인프라로써 제작된 5가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하는 방법을 제안한다. 자율주행차량에 장착된 영상 취득 센서의 경우에는 기후 환경 및 카메라의 특성 등으로 인해 취득 데이터의 일관성이 낮기 때문에 이를 보완하기 위해서 라이다 센서를 적용했다. 또한, 라이다로 기존의 다른 시설물들과의 구별을 용이하게 하기 위해서 고휘도 반사지를 시설물의 용도별로 디자인하여 부착했다. 이렇게 개발된 5가지 센서 전용 시설물들과 데이터 취득 시스템으로 취득한 포인트 클라우드 데이터로부터 측정 거리별 시설물의 특징을 추출하는 방법으로 해당 시설물에 부착된 고휘도 반사지의 평균 반사강도을 기준으로 특징 포인트들을 추출하여 DBSCAN 방법으로 군집화한 후 해당 포인트들을 투영법으로 2차원 좌표로 변경했다. 거리별 해당 시설물의 특징은 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도로 구성되며, 추후 개발될 시설물 인식을 위한 모형의 학습데이터로 활용될 예정이다.
본 연구는 잣나무와 낙엽송을 대상으로 라이다로부터 취득된 3차원의 Point cloud data (PCD)를 이용하여 딥러닝 기반의 수종 분류 모델을 구축하고 분류정확도를 비교·평가하였다. 수종 분류 모델은 라이다 플랫폼(고정식과 이동식), Farthest point sampling (FPS) 기반의 다운샘플링 강도(1024개, 2048개, 4096개, 8192개), 딥러닝 모델(PointNet, PointNet++) 3가지 조건에 따라 총 16개의 모델을 구축하였다. 분류 정확도 평가 결과, 고정식 라이다는 다운샘플링 강도가 8192개인 PCD 자료에 PointNet++ 모델을 적용하였을 때 카파계수가 93.7%로 가장 높았으며, 이동식 라이다는 다운샘플링 강도가 2048개에 PointNet++을 적용하였을 때 카파계수가 96.9%로 가장 높았다. 또한, 플랫폼과 다운샘플링 강도가 동일한 경우 PointNet++이 PointNet보다 정확도가 높았다. 구축된 16개 모델의 오분류 사례는 첫 번째, 수종 간의 구조적인 특징이 유사한 개체목 두 번째, 경사지 또는 임도 주변에 위치하여 편심생장한 개체목 세 번째, 개체목 분할 시 수관부가 수직으로 분할된 개체목에 대해 발생하였다.
문화유산 분야에서 일찍이 문화유산을 보존 복원하기 위한 목적으로, 3차원(3D) 디지털 기술을 이용하여 문화유산의 원형을 기록하여 왔다. 하지만 문화유산 3차원(3D) 디지털 기록은 점군 데이터 취득부터 3차원(3D) 모델 제작까지 복잡한 단계를 거쳐 생산되는 대용량의 디지털 기록으로, 장기 보존 문제를 피할 수 없다. 국제적으로 관련 논의가 활발히 진행 중에 있으며, 국내외 선행연구와 사례 분석을 바탕으로 문화유산 3차원(3D) 디지털 기록의 보존 방향을 제언하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.