• 제목/요약/키워드: Three-dimensional Point Cloud

검색결과 87건 처리시간 0.027초

깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법 (Rendering Quality Improvement Method based on Depth and Inverse Warping)

  • 이희제;윤준영;박종일
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.714-724
    • /
    • 2021
  • 포인트 클라우드 콘텐츠는 실제 환경 및 물체를 3차원 위치정보를 갖는 점들과 그에 대응되는 색상 등을 획득하여 기록한 실감 콘텐츠이다. 위치와 색상 정보로 구성된 3차원 점으로 이루어진 포인트 클라우드 콘텐츠는 확대하여 렌더링 할 경우 점과 점 사이의 간격이 벌어지면서 빈 구멍이 발생하게 된다. 본 논문에서는 포인트 클라우드 확대 시 점들 간 간격이 벌어져 생기는 구멍을 찾고 구멍에 대해 깊이정보를 활용한 역 변환 기반 보간 방법을 통해 포인트 클라우드 콘텐츠 품질을 개선하는 방법을 제안한다. 영상의 확대나 카메라 근접 등으로 포인트들의 간격이 벌어지면 틈이 생기면서 구멍 사이에 뒷면의 포인트들이 렌더링 되어 보간 방법을 적용하는데 방해요소로 작용한다. 이를 해결하기 위해 포인트 클라우드의 뒷면에 해당하는 점들을 제거한다. 다음으로 빈 구멍이 발생한 시점의 깊이 맵(depth map)을 추출한다. 마지막으로 역 변환을 하여 원본의 데이터에서 픽셀을 추출한다. 제안하는 방법으로 콘텐츠를 렌더링한 결과, 기존의 크기를 늘려 빈 영역을 채우는 방법에 비해 렌더링 품질이 평균 PSNR 측면에서 1.2 dB 향상된 결과를 보였다.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

Advanced 360-Degree Integral-Floating Display Using a Hidden Point Removal Operator and a Hexagonal Lens Array

  • Erdenebat, Munkh-Uchral;Kwon, Ki-Chul;Dashdavaa, Erkhembaatar;Piao, Yan-Ling;Yoo, Kwan-Hee;Baasantseren, Ganbat;Kim, Youngmin;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.706-713
    • /
    • 2014
  • An enhanced 360-degree integral-floating three-dimensional display system using a hexagonal lens array and a hidden point removal operator is proposed. Only the visible points of the chosen three-dimensional point cloud model are detected by the hidden point removal operator for each rotating step of the anamorphic optics system, and elemental image arrays are generated for the detected visible points from the corresponding viewpoint. Each elemental image of the elemental image array is generated by a hexagonal grid, due to being captured through a hexagonal lens array. The hidden point removal operator eliminates the overlap problem of points in front and behind, and the hexagonal lens array captures the elemental image arrays with more accurate approximation, so in the end the quality of the displayed image is improved. In an experiment, an anamorphic-optics-system-based 360-degree integral-floating display with improved image quality is demonstrated.

디지털 사진매핑에 의한 공학적 암반분류와 터널의 보강 (Supporting The Tunnel Using Digital Photographic Mapping And Engineering Rock Classification)

  • 김치환
    • 터널과지하공간
    • /
    • 제21권6호
    • /
    • pp.439-449
    • /
    • 2011
  • 터널의 페이스매핑(face mapping)을 신속하고 신뢰성 있게 수행하기 위하여 디지털 사진으로부터 3차원 좌표의 점군(point cloud)을 생성하고 이로부터 절리면의 방향과 간격 및 암질지수(R.Q.D), 절리면 거칠기 등을 분석하였다. 분석결과를 공학적 암반분류 방법인 RMR(Rock Mass Rating)과 Q 시스템에 입력하여 보강방법을 결정하고 터널을 시공하였다. 그 결과 터널 페이스매핑 작업의 안전성을 높이면서, 분석부터 보강작업까지의 시간을 절약하였다. 또 터널 막장면의 디지털 영상과 공학적 암반분류용 정보를 객관적으로 평가하고 필요 시재분석이 가능하도록 보존함으로써 보강등급 결정과 터널보강 방법의 신뢰도를 높였다.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정 (A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors)

  • 이주호;조정원
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.319-324
    • /
    • 2016
  • 실내에서 카메라를 이용한 로봇 응용이나 가상현실(Virtual Reality) 응용의 경우 평면을 찾고 추정하는 기술은 매우 중요한 기술이다. RGB-D 카메라의 경우 실내의 평면에서 질감 정보가 없는 평면에서도 3차원 관측 데이터를 얻을 수 있지만, 이미지 영역에서 점군 데이터(Point-cloud Data)를 처리하기 위해서는 많은 연산량이 필요하다. 더군다나 현재 관측되고 있는 평면의 개수가 몇 개인지 미리 알 수 없으며, 평면으로 검출(Plane Detection) 하더라도 강인하게 3차원에서 평면을 추정(Plane Estimation)하려면 추가적인 연산이 필요하다. 본 논문에서는 연속 데이터를 이용해 실시간으로 평면의 개수를 선택하며 평면을 추정하는 방법을 제시하고자 한다. 실험 결과를 통해 제안하는 방법이 전체 데이터를 처리하는 것에 비해 약 22배의 속도 개선을 가져 올 수 있음을 보였다.

영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용 (SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area)

  • 박종후 ;박상철
    • 한국시뮬레이션학회논문지
    • /
    • 제32권3호
    • /
    • pp.1-8
    • /
    • 2023
  • 영상레이더(SAR)에서 인공표적에 대한 모델링은 주로 3차원 CAD(Computer Aided Design) 모델의 면(face) 및 모서리(edge)에서 반사되는 레이더 신호를 광선추적(ray-tracing) 방식으로 시뮬레이션하고 있고, 지구 표면의 클러터(clutter)에 대한 모델링은 영상레이더 이미지 자체에 대한 통계학적(statistical) 분석을 통해 분포(distribution) 특성이 유사한 종류들을 구분하는 방식을 사용하고 있다. 본 논문에서는 지상의 인공표적 및 지표면의 배경 클러터를 3차원 점구름(point cloud) 산란점(scatterer point) 모델로 만들고 두 개의 모델이 통합된 상황에서 계산적(computational)인 신호처리 과정을 통해 영상 레이더 이미지를 생성하였으며, 이것을 실제 차량탑재형 영상레이더 시스템의 스트립맵(stripmap) 이미지 생성 결과 및 전자기적(EM) 모델링 또는 통계학적 분포 모델을 사용하여 분석한 결과와 유사한 지 비교해 보았다. 모델링 대상은 지상의 인공표적인 교량(다리)을 선정 했는데, 그 이유는 교량의 경유 주변에 수면과 지면이 같이 존재하는 특성이 있고 또한 군사용 및 민간용 활용에서 모두 관심이 많은 표적이기 때문이다.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.191-199
    • /
    • 2023
  • 본 논문에서는 자율협력주행을 위한 인프라로써 제작된 5가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하는 방법을 제안한다. 자율주행차량에 장착된 영상 취득 센서의 경우에는 기후 환경 및 카메라의 특성 등으로 인해 취득 데이터의 일관성이 낮기 때문에 이를 보완하기 위해서 라이다 센서를 적용했다. 또한, 라이다로 기존의 다른 시설물들과의 구별을 용이하게 하기 위해서 고휘도 반사지를 시설물의 용도별로 디자인하여 부착했다. 이렇게 개발된 5가지 센서 전용 시설물들과 데이터 취득 시스템으로 취득한 포인트 클라우드 데이터로부터 측정 거리별 시설물의 특징을 추출하는 방법으로 해당 시설물에 부착된 고휘도 반사지의 평균 반사강도을 기준으로 특징 포인트들을 추출하여 DBSCAN 방법으로 군집화한 후 해당 포인트들을 투영법으로 2차원 좌표로 변경했다. 거리별 해당 시설물의 특징은 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도로 구성되며, 추후 개발될 시설물 인식을 위한 모형의 학습데이터로 활용될 예정이다.

라이다 플랫폼과 딥러닝 모델에 따른 잣나무와 낙엽송의 분류정확도 비교 및 평가 (Comparison and Evaluation of Classification Accuracy for Pinus koraiensis and Larix kaempferi based on LiDAR Platforms and Deep Learning Models)

  • 이용규;이상진;이정수
    • 한국산림과학회지
    • /
    • 제112권2호
    • /
    • pp.195-208
    • /
    • 2023
  • 본 연구는 잣나무와 낙엽송을 대상으로 라이다로부터 취득된 3차원의 Point cloud data (PCD)를 이용하여 딥러닝 기반의 수종 분류 모델을 구축하고 분류정확도를 비교·평가하였다. 수종 분류 모델은 라이다 플랫폼(고정식과 이동식), Farthest point sampling (FPS) 기반의 다운샘플링 강도(1024개, 2048개, 4096개, 8192개), 딥러닝 모델(PointNet, PointNet++) 3가지 조건에 따라 총 16개의 모델을 구축하였다. 분류 정확도 평가 결과, 고정식 라이다는 다운샘플링 강도가 8192개인 PCD 자료에 PointNet++ 모델을 적용하였을 때 카파계수가 93.7%로 가장 높았으며, 이동식 라이다는 다운샘플링 강도가 2048개에 PointNet++을 적용하였을 때 카파계수가 96.9%로 가장 높았다. 또한, 플랫폼과 다운샘플링 강도가 동일한 경우 PointNet++이 PointNet보다 정확도가 높았다. 구축된 16개 모델의 오분류 사례는 첫 번째, 수종 간의 구조적인 특징이 유사한 개체목 두 번째, 경사지 또는 임도 주변에 위치하여 편심생장한 개체목 세 번째, 개체목 분할 시 수관부가 수직으로 분할된 개체목에 대해 발생하였다.

문화유산 3차원(3D) 디지털 기록의 보존방향 (Preservation Direction of Cultural Heritage Three-Dimensional (3D) Digital Records)

  • 안아영
    • 한국기록관리학회:학술대회논문집
    • /
    • 한국기록관리학회 2019년도 춘계학술대회
    • /
    • pp.43-47
    • /
    • 2019
  • 문화유산 분야에서 일찍이 문화유산을 보존 복원하기 위한 목적으로, 3차원(3D) 디지털 기술을 이용하여 문화유산의 원형을 기록하여 왔다. 하지만 문화유산 3차원(3D) 디지털 기록은 점군 데이터 취득부터 3차원(3D) 모델 제작까지 복잡한 단계를 거쳐 생산되는 대용량의 디지털 기록으로, 장기 보존 문제를 피할 수 없다. 국제적으로 관련 논의가 활발히 진행 중에 있으며, 국내외 선행연구와 사례 분석을 바탕으로 문화유산 3차원(3D) 디지털 기록의 보존 방향을 제언하고자 한다.