• Title/Summary/Keyword: Three-dimensional CT image

Search Result 195, Processing Time 0.023 seconds

A Phantom study of Displacement of Three Dimensional Volume Rendering for Clinical Application in Radiation Treatment Planning (방사선치료계획의 임상적용을 위한 3차원 볼륨렌더링영상 체적변화의 모형연구)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.280-288
    • /
    • 2009
  • This study is to design and produce a detailed model for volume variety of three dimensional reconstruction images and to evaluate the changes of volume, area and the length of the model in the process of the reconstruction of RTP system. CT simulation was operated at the thickness of 1.25, 2.5, 5, 10mm and average, standard deviation of scan direction(X), thickness(Y), table movement direction(Z), area(A), and volume(V) of the three dimensional volume rendering, were measured according to the shape and thickness of the phantoms. As a result, at the thickness of 1.25, 2.5min, the phantom's shape decreased maximum 0.13cm(p<0.05) to the direction of X, Y, Z and length, area, volume decreased 0.1cm, $0.8cm^2$, $3.99cm^3$ which led to an approximate image of the phantoms. However, at the thickness of 5, 10mm, the phantom of the original form decreased maximum 0.58cm(p<0.05) and volume, area, length decreased maximum 0.45cm, $8.21cm^2$, $11.03cm^3$. Volume varieties according to the thickness and shape of the phantoms have occurred diversely, when CT simulation was operated, and it is considered that a clinically appropriate volume rendering can be obtained only when the thickness is below 3mm.

Implementation of 3D Video using Time-Shortening Algorithm (시간단축 알고리즘을 통한 3D 동영상 구현)

  • Shin, Jin-Seob;Jeong, Chan-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.123-128
    • /
    • 2020
  • In this paper, we presents a new cone beam computerized tomography (CBCT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time. And we showed the Rotation-based method was good rather than existing reconstruction technique for 3D images, also found weakness and a solution for it.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

The accuracy of reformatted images using a new virtual 3-dimensional dental implant system (국내에서 개발된 3차원 임플란트 가상시술 시스템에 의한 영상재구성상의 정확도)

  • Choi Jin-Seok;Kim Eun-Kyung;Han Won-Jeong
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • Purpose: To compare the measurements of the mandible and the detectability of the mandibular canal on reformatted images using a newly developed 3-dimensional implant simulation program with traditionally used CT multiplanar reconstruction program and true measurements. Materials and Methods: Ten dry dog mandibles were used in this study. Occlusal templates for CT examination were fabricated and marked with gutta perch a at ten sites. Axial CT scans were taken and reconstructed using DentaScan (D group) and Vimplant program (V group), and each mandible was sectioned at the previously marked sites (R group). Maximum vertical height (H) and maximum width (W) of the mandible, the distances from buccal border of the mandibular canal to the most buccal aspect of the mandible (X), and the distance from the superior border of the mandibular canal to the alveolar crest (Y) were measured, and the mandibular measurements in each group were compared. Detectability of mandibular canal was evaluated using a 3-point scale in both V and D groups by three oral radiologists and compared. Results: H in the V group was slightly greater than that in the D group, and Wand X in the V group was slightly less than those in the D group. H in the V group was less than that in the R group, and Wand X in the V group was larger than those in the R group. The detectability of the mandibular canal did not show statistically significant differences between V and D groups. Conclusion: The results of the experiment show that the newly developed, inexpensive Vimplant/TM/ simulation program can be used as an alternative to the traditionally used, and more expensive CT multiplanar reconstruction program.

  • PDF

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won;Lee, Woo-Jin;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

Method of Fast Interpolation of B-Spline Volumes for Reconstructing the Heterogeneous Model of Bones from CT Images (CT 영상에서 뼈의 불균질 모델 생성을 위한 B-스플라인 볼륨의 빠른 보간 방법)

  • Park, Jun Hong;Kim, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.373-379
    • /
    • 2016
  • It is known that it is expedient to represent the distribution of the properties of a bone with complex heterogeneity as B-spline volume functions. For B-spline-based representation, the pixel values of CT images are interpolated by B-spline volume functions. However, the CT images of a bone are three-dimensional and very large, and hence a large amount of memory and long computation time for the interpolation are required. In this study, a method for resolving these problems is proposed. In the proposed method, the B-spline volume interpolation problem is simplified by using the uniformity of pixel spacing of the image and the properties of B-spline basis functions. This results in a reduction in computation time and the amount of memory used. The proposed method was implemented and it was verified that the computation time and the amount of memory used were reduced.

Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

  • Oliveira, Matheus L.;Tosoni, Guilherme M.;Lindsey, David H.;Mendoza, Kristopher;Tetradis, Sotirios;Mallya, Sanjay M.
    • Imaging Science in Dentistry
    • /
    • v.44 no.4
    • /
    • pp.279-285
    • /
    • 2014
  • Purpose: To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods: Tubes containing solutions with different concentrations of $K_2HPO_4$ were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the $K_2HPO_4$ solutions were measured. The relationship between CT number and $K_2HPO_4$ concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results: The relationship between $K_2HPO_4$ concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion: There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

SKELETAL PATTERN ANALYSIS OF FACIAL ASYMMETRY PATIENT USING THREE DIMENSIONAL COMPUTED TOMOGRAPHY (삼차원 전산화 단층촬영술을 이용한 안모 비대칭환자의 골격 분석)

  • Choi, Jung-Goo;Min, Seung-Ki;Oh, Seung-Hwan;Kwon, Kyung-Hwan;Choi, Moon-Ki;Lee, June;Oh, Se-Ri;Yu, Dae-Hyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.622-627
    • /
    • 2008
  • In orthognathic surgery, precise analysis and diagnosis are essential for successful results. In facial asymmetric patient, traditional 2D image analysis has been used by lateral and P-A Cephalometric view, Skull PA, Panorama, Submentovertex view etc. But clinicians sometimes misdiagnose because they cannot find exact landmark due to superimposition, moreover image can be magnified and distorted by projection technique or patient's skull position, when using these analysis and method. For overcome these defects, analysis by using of 3D CT has been introduced. In this way we can analysis precisely by getting the exact image free of artifact and finding exact landmark with no interruption of superimposition. So we want to review of relationship between various skeletal landmarks of mandible or cranial base and facial asymmetry by predictable analysis using 3D CT. We select the cases of the patients who visited our department for correction of facial asymmetry during 2003-2007 and who were taken image of 3D CT for diagnosis. 3D CT images were reconstructed to 3D image by using V-Work program (Cybermed Inc., Seoul, Korea). And we analysis the relationship between facial asymmetry and various affecting factor of skeletal pattern. The mandibular ramus hight difference between right and left was most affecting factor that express facial asymmetry. And in this research, there was no relationship between cranial base and facial asymmetry. The angulation between facial midline and mandibular ramus divergency has significant relationship with facial asymmetry