DOI QR코드

DOI QR Code

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won (Interdisciplinary Program in Radiation, Applied Life Science Major, College of Medicine, BK21, and Dental Research Institute, Seoul National University) ;
  • Lee, Woo-Jin (Interdisciplinary Program in Radiation, Applied Life Science Major, College of Medicine, BK21, and Dental Research Institute, Seoul National University) ;
  • Choi, Soon-Chul (Department of Oral and Maxillofacial Radiology, BK21, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Sam-Sun (Department of Oral and Maxillofacial Radiology, BK21, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Heo, Min-Suk (Department of Oral and Maxillofacial Radiology, BK21, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Huh, Kyung-Hoe (Department of Oral and Maxillofacial Radiology, BK21, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Tae-Il (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yi, Won-Jin (Department of Oral and Maxillofacial Radiology, BK21, and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2014.07.10
  • Accepted : 2014.11.17
  • Published : 2015.03.31

Abstract

Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

Keywords

References

  1. Schnitman PA, Wohrle PS, Rubenstein JE, DaSilva JD, Wang NH. Ten-year results for Branemark implants immediately loaded with fixed prostheses at implant placement. Int J Oral Maxillofac Implants 1997; 12: 495-503.
  2. Rossi E, Andreasen JO. Maxillary bone growth and implant positioning in a young patient: a case report. Int J Periodontics Restorative Dent 2003; 23: 113-9.
  3. Tarlow JL. The effect of adult growth on an anterior maxillary single-tooth implant: a clinical report. J Prosthet Dent 2004; 92: 213-5. https://doi.org/10.1016/j.prosdent.2004.06.008
  4. Laffargue P, Fialdes P, Frayssinet P, Rtaimate M, Hildebrand HF, Marchandise X. Adsorption and release of insulin-like growth factor-I on porous tricalcium phosphate implant. J Biomed Mater Res 2000; 49: 415-21. https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<415::AID-JBM15>3.0.CO;2-Z
  5. Robert P, Mauduit J, Frank RM, Vert M. Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration. Biomaterials 1993; 14: 353-8. https://doi.org/10.1016/0142-9612(93)90054-6
  6. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg 1966; 93: 839-43. https://doi.org/10.1001/archsurg.1966.01330050143023
  7. Karabuda C, Ozdemir O, Tosun T, Anil A, Olgac V. Histological and clinical evaluation of 3 different grafting materials for sinus lifting procedure based on 8 cases. J Periodontol 2001; 72: 1436-42. https://doi.org/10.1902/jop.2001.72.10.1436
  8. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977; 16: 1-132.
  9. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981; 52: 155-70. https://doi.org/10.3109/17453678108991776
  10. Kim DS, Kim DG, Park CJ, Cho LR. Histomorphometry and stability analysis of early loaded implants with two different surface conditions in beagle dogs. J Adv Prosthodont 2009; 1: 10-8. https://doi.org/10.4047/jap.2009.1.1.10
  11. Nkenke E, Hahn M, Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 2003; 14: 601-9. https://doi.org/10.1034/j.1600-0501.2003.00937.x
  12. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop 2006; 129: 721.e7-12.
  13. Garetto LP, Chen J, Parr JA, Roberts WE. Remodeling dynamics of bone supporting rigidly fixed titanium implants: a histomorphometric comparison in four species including humans. Implant Dent 1995; 4: 235-43. https://doi.org/10.1097/00008505-199500440-00002
  14. Roberts WE. Bone tissue interface. J Dent Educ 1988; 52: 804-9.
  15. Le Guehennec L, Goyenvalle E, Lopez-Heredia MA, Weiss P, Amouriq Y, Layrolle P. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin Oral Implants Res 2008; 19: 1103-10. https://doi.org/10.1111/j.1600-0501.2008.01547.x
  16. Rebaudi A, Koller B, Laib A, Trisi P. Microcomputed tomographic analysis of the peri-implant bone. Int J Periodontics Restorative Dent 2004; 24: 316-25.
  17. Park HS, Kwon OW, Sung JH. Microscrew implant anchorage sliding mechanics. World J Orthod 2005; 6: 265-74.
  18. Schicho K, Kastner J, Klingesberger R, Seemann R, Enislidis G, Undt G, et al. Surface area analysis of dental implants using micro-computed tomography. Clin Oral Implants Res 2007; 18: 459-64. https://doi.org/10.1111/j.1600-0501.2007.01338.x
  19. Van Oossterwyck H, Duyck J, Vander Sloten J, Van der Perre G, Jansen J, Wevers M, et al. Use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants. J Oral Implantol 2000; 26: 5-12. https://doi.org/10.1563/1548-1336(2000)026<0005:TUOMCT>2.3.CO;2
  20. Bernhardt R, Kuhlisch E, Schulz MC, Eckelt U, Stadlinger B. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-$SRr{\mu}CT$ slices. Eur Cell Mater 2012; 23: 237-48. https://doi.org/10.22203/eCM.v023a18
  21. Park YS, Yi KY, Lee IS, Jung YC. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin Oral Implants Res 2005; 16: 156-60. https://doi.org/10.1111/j.1600-0501.2004.01083.x
  22. Liu S, Broucek J, Virdi AS, Sumner DR. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation. J Microsc 2012; 245: 34-42. https://doi.org/10.1111/j.1365-2818.2011.03541.x
  23. Debats OA, Litjens GJ, Barentsz JO, Karssemeijer N, Huisman HJ. Automated 3-dimensional segmentation of pelvic lymph nodes in magnetic resonance images. Med Phys 2011; 38: 6178-87. https://doi.org/10.1118/1.3654162
  24. Singh UP, Saxena K, Jain S. Semi-supervised method of multiple object segmentation with a region labeling and flood fill. Signal Image Process 2011; 2: 175-93.
  25. Park JW, An CH, Jeong SH, Suh JY. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone. Clin Oral Implants Res 2012; 23: 294-300. https://doi.org/10.1111/j.1600-0501.2010.02144.x
  26. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002; 28: 2-8. https://doi.org/10.1563/1548-1336(2002)028<0002:BRTMAR>2.3.CO;2
  27. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991; 25: 889-902. https://doi.org/10.1002/jbm.820250708
  28. Jeong R, Marin C, Granato R, Suzuki M, Gil JN, Granjeiro JM, et al. Early bone healing around implant surfaces treated with variations in the resorbable blasting media method. A study in rabbits. Med Oral Patol Oral Cir Bucal 2010; 15: e119-25.
  29. Rohner D, Tay A, Chung SM, Hutmacher DW. Interface of unloaded titanium implants in the iliac crest, fibula, and scapula: a histomorphometric and biomechanical study in the pig. Int J Oral Maxillofac Implants 2004; 19: 52-8.
  30. Butz F, Ogawa T, Chang TL, Nishimura I. Three-dimensional bone-implant integration profiling using micro-computed tomography. Int J Oral Maxillofac Implants 2006; 21: 687-95.
  31. Ko CY, Lim DH, Choi BH, Li J, Kim HS. Suggestion of new methodology for evaluation of osseointegration between implant and bone based on $\mu$-CT images. Int J Precis Eng Man 2010; 11: 785-90. https://doi.org/10.1007/s12541-010-0093-1

Cited by

  1. Histopathological Evaluation of Orthopedic Medical Devices: The State-of-the-art in Animal Models, Imaging, and Histomorphometry Techniques vol.47, pp.3, 2019, https://doi.org/10.1177/0192623318821083
  2. Bioactivity of an Experimental Dental Implant with Anodized Surface vol.12, pp.2, 2015, https://doi.org/10.3390/jfb12020039