• Title/Summary/Keyword: Three-dimensional (3D) printing

Search Result 209, Processing Time 0.028 seconds

Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer (툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작)

  • Suk, Ik-hyun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

Evaluation of 3D printability of cementitious materials according to thixotropy behavior

  • Lee, Keon-Woo;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • This study is a basic research for evaluating the buildability of cementitious materials for three-dimensional (3D) printing. In the cement paste step, the thixotropy behavior according to the resting time, which represents the time interval between each layer, was analyzed. In addition, the relationship between the thixotropy behavior and 3D concrete printing buildability was derived by proposing a measurement method that simulates the 3D concrete printing buildup process. The analysis of the tendency of the thixotropy behavior according to the resting time revealed that the area of the hysteresis loop (AHyst) showed a tendency to increase and then converge as the resting time increased, which means hysteresis loop approach critical resting time for sufficient buildability. In the thixotropy behavior analysis that simulates the 3D concrete printing buildup process, the buildup ratio, which is the recovery rate of the shear stress, showed a tendency to increase and then converge as the resting time increased, which are similar results like hysteresis loop. It was concluded that AHyst and the buildup ratio can be used as parameters for determining the resting time, and they have close relationships with 3D concrete printing buildability.

Evaluation of the accuracy of dental casts manufactured with 3D printing technique in the All-on-4 treatment concept

  • Hilin, Tas;Fatih, Demirci;Mesut, Tuzlali;Erkan, Bahce;Guler Yildirim, Avcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.379-387
    • /
    • 2022
  • PURPOSE. The aim of this study is to compare the casts obtained by using conventional techniques and liquid crystal display (LCD) three-dimensional (3D) print techniques in the All-on-4 treatment concept of the edentulous mandibular jaw. MATERIALS AND METHODS. In this study, a completely edentulous mandibular acrylic cast (typodont) with bone-level implants placed with the Allon-4 technique served as a reference cast. In this typodont, impressions were taken with the conventional technique and dental stone casts were obtained. In addition, after scanning the acrylic cast in a dental laboratory scanner and obtaining the Standard Tessellation Language (STL) data, 3D printed casts were manufactured with a 3D printing device based on the design. The stone and 3D printed casts were scanned in the laboratory scanner and STL data were obtained, and then the interimplant distances were measured using Geomagic Control X v2020 (3D Systems, Rock Hill, SC, USA) analysis software (n = 60). The obtained data were statistically evaluated with one-way analysis of variance (ANOVA) and Tukey's pairwise comparison tests. RESULTS. As a result of the one-way ANOVA test, it was determined that the stone casts, 3D printed casts, and reference cast values in all distance intervals conformed to the normal distribution and these values had a significant difference among them in all distance intervals. In Tukey pairwise comparison test, significant differences were found between casts at all distance intervals. In all analyses, the level of significance was determined as .05. CONCLUSION. 3D printed casts obtained with a 3D LCD printing device can be an alternative to stone casts when implants are placed in edentulous jaws. [J Adv Prosthodont 2022;14:379-87]

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

Evaluation of Flexural Strength of 3D Printing Resin According to Post-Curing Equipment and Time (후경화기와 경화시간에 따른 3D 프린팅 레진의 굴곡강도 평가)

  • Hae-Bom Kim;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.629-637
    • /
    • 2023
  • This study aimed to evaluate the effect of post-curing equipment and time on the flexural strength of 3D printing resins produced by a liquid crystal display(LCD) printer. The three 3D printing resins(DENTCA Denture Teeth, DT; C&B 5.0 hybrid, CH; C&B Permanent A2, CP) were divided into four groups according to post-curing time(10 min and 30 min) and equipment with or without vacuum treatment. For the three-point flexural strength test and biaxial strength test were prepared by method according to ISO 10477, ISO 6872, respectively. Flexural strength was measured with universal testing machine. Comparison between post-curing time of each post-curing equipment was analyzed by independent sample t-test and Mann-Whitney U test(α=.05), and comparison between groups according to each 3D printing resin was performed by Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(α=.05). The flexural strength of the resin post-curing under vacuum was higher than that of the resin post-curing in air. In the comparison according to the post-curing time, in the case of the post-curing equipment without vacuum, the 30 minute curing time showed significantly higher flexural strength than the 10 minute curing time, except for the biaxial flexural strength of CH(P<.05). In the post-curing equipment with vacuum, the three-point flexural strength of all 3D printing resins(DT, CH, and CP) showed a higher value at 30 minute curing time than at 10 minute curing time.

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.

Preparatory Research prior to the Development of Consumer-Tailored 3D Printing Service Platform (소비자 맞춤형 삼차원 프린팅 서비스 플랫폼 개발을 위한 탐색)

  • Lee, Guk-Hee;Choi, Hye-Kyong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.3-16
    • /
    • 2017
  • With the development and proliferation of three-dimensional(3D) printers, consumers in modern society can now print products of what they want three-dimensionally at home. However, consumers themselves would have to produce digital design maps that are compatible with 3D printers and to set up the optimum printing quality and temperature, as well as to pay for maintenance and repair of 3D printers and to respond to any possible lawsuits related to intellectual property right about designs in order to make possible consumer-tailored manufacturing through 3D printing. However, in reality, since it is very difficult for consumers to respond to these issues, it is necessary to develop services that perform 3D printing on behalf of consumers in the desired direction. Motivated by this objective, this study investigated user experiences on Shapeways(www.shapeways.com), which is a global online 3D printing product and sales companies, from many viewpoints in order to obtain insight into 3D printing services and modes which were preferred by consumers. The study result showed that quantitative evaluations on usability, search process, price adequacy, re-visit intention, diversity of design, and satisfaction of design was scored low overall. Furthermore, this study acquired insight about consumer-tailored 3D printing services through constructive suggestions on multi-language support, openness of manufacturing process, simultaneous operation of online and offline sites, design-oriented consumer-tailored manufacturing service, services that ensure delivery safety and product durability, and surface finishing services. This study is expected to provide a wide range of opinions not only on 3D printing service platform development but also on related industry and research.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.489-498
    • /
    • 2022
  • Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.