Browse > Article
http://dx.doi.org/10.3340/jkns.2021.0235

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training  

Park, Chul-Kee (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine)
Publication Information
Journal of Korean Neurosurgical Society / v.65, no.4, 2022 , pp. 489-498 More about this Journal
Abstract
Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.
Keywords
3-dimensional printing; Stereolithography; Surgical navigation; Simulation training;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, et al. : A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158 : 1213-1219, 2016   DOI
2 Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF, Dietz UA, et al. : Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir Bras 28 : 756-761, 2013   DOI
3 Mankovich NJ, Cheeseman AM, Stoker NG : The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 3 : 200-203, 1990   DOI
4 Mokin M, Setlur Nagesh SV, Ionita CN, Mocco J, Siddiqui AH : Stent retriever thrombectomy with the cover accessory device versus proximal protection with a balloon guide catheter: in vitro stroke model comparison. J Neurointerv Surg 8 : 413-417, 2016   DOI
5 Nagassa RG, McMenamin PG, Adams JW, Quayle MR, Rosenfeld JV : Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print Med 5 : 11, 2019   DOI
6 Oishi M, Fukuda M, Yajima N, Yoshida K, Takahashi M, Hiraishi T, et al. : Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg 119 : 94-105, 2013   DOI
7 Andereggen L, Gralla J, Andres RH, Weber S, Schroth G, Beck J, et al. : Stereolithographic models in the interdisciplinary planning of treatment for complex intracranial aneurysms. Acta Neurochir (Wien) 158 : 1711-1720, 2016   DOI
8 Bae JW, Lee DY, Pang CH, Kim JE, Park CK, Lee D, et al. : Clinical application of 3D virtual and printed models for cerebrovascular diseases. Clin Neurol Neurosurg 206 : 106719, 2021   DOI
9 Bairamian D, Liu S, Eftekhar B : Virtual reality angiogram vs 3-dimensional printed angiogram as an educational tool-a comparative study. Neurosurgery 85 : E343-E349, 2019   DOI
10 Blaszczyk M, Jabbar R, Szmyd B, Radek M : 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. J Clin Med 10 : 1201, 2021   DOI
11 Bohl MA, Mauria R, Zhou JJ, Mooney MA, DiDomenico JD, McBryan S, et al. : The barrow biomimetic spine: face, content, and construct validity of a 3D-printed spine model for freehand and minimally invasive pedicle screw insertion. Global Spine J 9 : 635-641, 2019   DOI
12 Breimer GE, Haji FA, Bodani V, Cunningham MS, Lopez-Rios AL, Okrainec A, et al. : Simulation-based education for endoscopic third ventriculostomy: a comparison between virtual and physical training models. Oper Neurosurg (Hagerstown) 13 : 89-95, 2017   DOI
13 Namba K, Higaki A, Kaneko N, Mashiko T, Nemoto S, Watanabe E : Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases. World Neurosurg 84 : 178-186, 2015   DOI
14 Gargiulo P, Arnadottir I, Gislason M, Edmunds K, Olafsson I : New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng 2017 : 1439643, 2017
15 Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, et al. : Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol 17 : 182-197, 2016   DOI
16 Makris DN, Pappas EP, Zoros E, Papanikolaou N, Saenz DL, Kalaitzakis G, et al. : Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 64 : 105009, 2019   DOI
17 Pucci JU, Christophe BR, Sisti JA, Connolly ES Jr : Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35 : 521-529, 2017   DOI
18 Fiani B, Newhouse A, Cathel A, Sarhadi K, Soula M : Implications of 3-dimensional printed spinal implants on the outcomes in spine surgery. J Korean Neurosurg Soc 64 : 495-504, 2021   DOI
19 Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, et al. : 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. J Neurosurg 130 : 248-255, 2018   DOI
20 Faraj MK, Hoz SS, Mohammad AJ : The use of three-dimensional anatomical patient-specific printed models in surgical clipping of intracranial aneurysm: a pilot study. Surg Neurol Int 11 : 381, 2020   DOI
21 Grau S, Kellermann S, Faust M, Perrech M, Beutner D, Drzezga A, et al. : Repair of cerebrospinal fluid leakage using a transfrontal, radial adipofascial flap: an individual approach supported by three-dimensional printing for surgical planning. World Neurosurg 110 : 315-318, 2018   DOI
22 Han M, Portnova AA, Lester M, Johnson M : A do-it-yourself 3D-printed thoracic spine model for anesthesia resident simulation. PLoS One 15 : e0228665, 2020   DOI
23 Lan Q, Chen A, Zhang T, Li G, Zhu Q, Fan X, et al. : Development of three-dimensional printed craniocerebral models for simulated neurosurgery. World Neurosurg 91 : 434-442, 2016   DOI
24 Kono K, Shintani A, Okada H, Terada T : Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model. Neurol Med Chir (Tokyo) 53 : 347-351, 2013   DOI
25 Burkhard M, Furnstahl P, Farshad M : Three-dimensionally printed vertebrae with different bone densities for surgical training. Eur Spine J 28 : 798-806, 2019   DOI
26 Byvaltsev V, Polkin R, Bereznyak D, Giers MB, Hernandez PA, Shepelev V, et al. : 3D-printed cranial models simulating operative field depth for microvascular training in neurosurgery. Surg Neurol Int 12 : 213, 2021   DOI
27 Van Dijk M, Smit TH, Jiya TU, Wuisman PI : Polyurethane real-size models used in planning complex spinal surgery. Spine (Phila Pa 1976) 26 : 1920-1926, 2001   DOI
28 Wang JL, Yuan ZG, Qian GL, Bao WQ, Jin GL : 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine (Baltimore) 97 : e11103, 2018   DOI
29 Licci M, Thieringer FM, Guzman R, Soleman J : Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal. Neurosurg Focus 48 : E18, 2020
30 London NR Jr, Rangel GG, VanKoevering K, Zhang A, Powell AR, Prevedello DM, et al. : Simulation of pediatric anterior skull base anatomy using a 3D printed model. World Neurosurg 147 : e405-e410, 2021   DOI
31 Kosterhon M, Neufurth M, Neulen A, Schafer L, Conrad J, Kantelhardt SR, et al. : Multicolor 3D printing of complex intracranial tumors in neurosurgery. J Vis Exp, 2020 [Epub ahead of print]
32 Lan Q, Zhu Q, Xu L, Xu T : Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions. World Neurosurg 134 : e761-e770, 2020   DOI
33 Leal A, Souza M, Nohama P : Additive manufacturing of 3D biomodels as adjuvant in intracranial aneurysm clipping. Artif Organs 43 : E9-E15, 2019   DOI
34 Park HJ, Wang C, Choi KH, Kim HN : Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training. J Orthop Surg Res 13 : 86, 2018   DOI
35 Ritacco LE, Di Lella F, Mancino A, Gonzalez Bernaldo de Quiros F, Boccio C, Milano FE : 3D printed models and navigation for skull base surgery: case report and virtual validation. Stud Health Technol Inform 216 : 1025, 2015
36 Ryan JR, Chen T, Nakaji P, Frakes DH, Gonzalez LF : Ventriculostomy simulation using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosur 84 : 1333-1339, 2015   DOI
37 Shen Z, Xie Y, Shang X, Xiong G, Chen S, Yao Y, et al. : The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. Technol Health Care 28 : 131-150, 2020   DOI
38 Zhuang YD, Zhou MC, Liu SC, Wu JF, Wang R, Chen CM : Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease. Patient Educ Couns 102 : 1875-1881, 2019   DOI
39 Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, et al. : The creation and verification of cranial models using three-dimensional rapid prototyping technology in field of transnasal sphenoid endoscopy. Am J Rhinol Allergy 26 : e132-e136, 2012   DOI
40 Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, et al. : Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore) 94 : e582, 2015   DOI
41 Leal AG, Mori YT, Nohama P, De Souza MA : Three-dimensional hollow elastic models for intracranial aneurysm clipping election - a case study. Annu Int Conf IEEE Eng Med Biol Soc 2019 : 4137-4140, 2019
42 Wu AM, Wang K, Wang JS, Chen CH, Yang XD, Ni WF, et al. : The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Ann Transl Med 6 : 403, 2018   DOI
43 Guo XY, He ZQ, Duan H, Lin FH, Zhang GH, Zhang XH, et al. : The utility of 3-dimensional-printed models for skull base meningioma surgery. Ann Transl Med 8 : 370, 2020   DOI
44 Hao J, Nangunoori R, Wu YY, Rajaraman M, Cook D, Yu A, et al. : Material characterization and selection for 3D-printed spine models. 3D Print Med 4 : 8, 2018   DOI
45 Hicdonmez T, Parsak T, Cobanoglu S : Simulation of surgery for craniosynostosis: a training model in a fresh cadaveric sheep cranium. Technical note. J Neurosurg 105 (2 Suppl) : 150-152, 2006
46 Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR : Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr 20 : 1-9, 2017   DOI
47 Weiss MY, Melnyk R, Mix D, Ghazi A, Vates GE, Stone JJ : Design and validation of a cervical laminectomy simulator using 3D printing and hydrogel phantoms. Oper Neurosurg (Hagerstown) 18 : 202-208, 2020   DOI
48 Xu WH, Liu J, Li ML, Sun ZY, Chen J, Wu JH : 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann Transl Med 2 : 74, 2014
49 Galvez M, Asahi T, Baar A, Carcuro G, Cuchacovich N, Fuentes JA, et al. : Use of three-dimensional printing in orthopaedic surgical planning. J Am Acad Orthop Surg Glob Res Rev 2 : e071, 2018
50 Bortman J, Baribeau Y, Jeganathan J, Amador Y, Mahmood F, Shnider M, et al. : Improving clinical proficiency using a 3-dimensionally printed and patient-specific thoracic spine model as a haptic task trainer. Reg Anesth Pain Med 43 : 819-824, 2018
51 Ghizoni E, De Souza JPSAS, Raposo-Amaral CE, Denadai R, De Aquino HB, Raposo-Amaral CA, et al. : 3D-printed craniosynostosis model: new simulation surgical tool. World Neurosurg 109 : 356-361, 2018   DOI
52 Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, et al. : Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg 123 : 1070-1076, 2015   DOI
53 Thawani JP, Singh N, Pisapia JM, Abdullah KG, Parker D, Pukenas BA, et al. : Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy. Neurosurgery 80 : 635-645, 2017   DOI
54 Waran V, Devaraj P, Hari Chandran T, Muthusamy KA, Rathinam AK, Balakrishnan YK, et al. : Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci 19 : 574-577, 2012   DOI
55 Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, et al. : Injecting realism in surgical training-initial simulation experience with custom 3D models. J Surg Educ 71 : 193-197, 2014   DOI
56 Wu ZX, Huang LY, Sang HX, Ma ZS, Wan SY, Cui G, et al. : Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 24 : 444-450, 2011   DOI
57 Grosch AS, Schroder T, Schroder T, Onken J, Picht T : Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training. Acta Neurochir (Wien) 162 : 1957-1965, 2020   DOI
58 Yi Z, He B, Liu Y, Huang S, Hong W : Development and evaluation of a craniocerebral model with tactile-realistic feature and intracranial pressure for neurosurgical training. J Neurointerv Surg 12 : 94-97, 2020   DOI
59 Zheng JP, Li CZ, Chen GQ : Multimaterial and multicolor 3D-printed model in training of transnasal endoscopic surgery for pituitary adenoma. Neurosurg Focus 47 : E21, 2019   DOI
60 Zheng W, Chen C, Zhang C, Tao Z, Cai L : The feasibility of 3D printing technology on the treatment of pilon fracture and its effect on doctor-patient communication. Biomed Res Int 2018 : 8054698, 2018
61 Stefan P, Pfandler M, Lazarovici M, Weigl M, Navab N, Euler E, et al. : Three-dimensional-printed computed tomography-based bone models for spine surgery simulation. Simul Healthc 15 : 61-66, 2020   DOI
62 D'Urso PS, Askin G, Earwaker JS, Merry GS, Thompson RG, Barker TM, et al. : Spinal biomodeling. Spine (Phila Pa 1976) 24 : 1247-1251, 1999   DOI
63 Chueh JY, Kuhn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ : Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke 44 : 1396-1401, 2013   DOI
64 Weinstock P, Prabhu SP, Flynn K, Orbach DB, Smith E : Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr 16 : 584-589, 2015   DOI
65 Shah A, Jankharia B, Goel A : Three-dimensional model printing for surgery on arteriovenous malformations. Neurol India 65 : 1350-1354, 2017   DOI
66 Shah KJ, Peterson JC, Beahm DD, Camarata PJ, Chamoun RB : Three-dimensional printed model used to teach skull base anatomy through a transsphenoidal approach for neurosurgery residents. Oper Neurosurg (Hagerstown) 12 : 326-329, 2016   DOI
67 Sullivan S, Aguilar-Salinas P, Santos R, Beier AD, Hanel RA : Three-dimensional printing and neuroendovascular simulation for the treatment of a pediatric intracranial aneurysm: case report. J Neurosurg Pediatr 22 : 672-677, 2018   DOI
68 Wen G, Cong Z, Liu K, Tang C, Zhong C, Li L, et al. : A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Childs Nerv Syst 32 : 1109-1116, 2016   DOI
69 Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J : Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100 : 139-145, 2004   DOI
70 Ye X, Wang L, Li K, Hao Q, Lu J, Chen X, et al. : A three-dimensional color-printed system allowing complete modeling of arteriovenous malformations for surgical simulations. J Clin Neurosci 77 : 134-141, 2020   DOI
71 Chueh JY, Wakhloo AK, Gounis MJ : Effectiveness of mechanical endovascular thrombectomy in a model system of cerebrovascular occlusion. AJNR Am J Neuroradiol 33 : 1998-2003, 2012   DOI
72 Liaw CY, Guvendiren M : Current and emerging applications of 3D printing in medicine. Biofabrication 9 : 024102, 2017   DOI
73 Clifton W, Nottmeier E, Edwards S, Damon A, Dove C, Refaey K, et al. : Development of a novel 3D printed phantom for teaching neurosurgical trainees the freehand technique of C2 laminar screw placement. World Neurosurg 129 : e812-e820, 2019   DOI
74 Gomez-Feria J, Narros JL, Ciriza GG, Roldan-Lora F, Schrader IM, Martin-Rodriguez JF, et al. : 3D printing of diffuse low-grade gliomas involving eloquent cortical areas and subcortical functional pathways: technical note. World Neurosurg 147 : 164-171, 2021   DOI
75 Li C, Yang M, Xie Y, Chen Z, Wang C, Bai Y, et al. : Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 20 : 475-480, 2015   DOI
76 Lin J, Zhou Z, Guan J, Zhu Y, Liu Y, Yang Z, et al. : Using three dimensional printing to create individualized cranial nerve models for skull base tumor surgery. World Neurosurg 120 : e142-e152, 2018   DOI
77 Umemura T, Nishizawa S, Miyachi H, Yamamoto J : Removal of double cavernous angioma of the frontal lobe using a three-dimensional printed model: a case report. J UOEH 42 : 217-222, 2020   DOI
78 Zheng JP, Li CZ, Chen GQ, Song GD, Zhang YZ : Three-dimensional printed skull base simulation for transnasal endoscopic surgical training. World Neurosurg 111 : e773-e782, 2018   DOI
79 Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, et al. : A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124 : 811-816 2016   DOI
80 Thawani JP, Pisapia JM, Singh N, Petrov D, Schuster JM, Hurst RW, et al. : Three-dimensional printed modeling of an arteriovenous malformation including blood flow. World Neurosurg 90 : 675-683, 2016   DOI
81 Wang L, Ye X, Hao Q, Chen Y, Chen X, Wang H, et al. : Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg 103 : 671-679, 2017   DOI
82 Wang L, Ye X, Hao Q, Ma L, Chen X, Wang H, et al. : Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J Clin Neurosci 50 : 77-82, 2018   DOI
83 Muller A, Krishnan KG, Uhl E, Mast G : The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14 : 899-914, 2003   DOI
84 Lin QS, Lin YX, Wu XY, Yao PS, Chen P, Kang DZ : Utility of 3-dimensional-printed models in enhancing the learning curve of surgery of tuberculum sellae meningioma. World Neurosurg 113 : e222-e231, 2018   DOI
85 Machi P, Jourdan F, Ambard D, Reynaud C, Lobotesis K, Sanchez M, et al. : Experimental evaluation of stent retrievers' mechanical properties and effectiveness. J Neurointerv Surg 9 : 257-263, 2017   DOI
86 Mashiko T, Konno T, Kaneko N, Watanabe E : Training in brain retraction using a self-made three-dimensional model. World Neurosurg 84 : 585-590, 2015   DOI
87 Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, et al. : Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83 : 351-361, 2015   DOI
88 Mooney MA, Cavallo C, Zhou JJ, Bohl MA, Belykh E, Gandhi S, et al. : Three-dimensional printed models for lateral skull base surgical training: anatomy and simulation of the transtemporal approaches. Oper Neurosurg (Hagerstown) 18 : 193-201, 2020   DOI
89 Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZA, Wormald PJ, et al. : Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 272 : 753-757, 2015   DOI
90 Waran V, Narayanan V, Karuppiah R, Thambynayagam HC, Muthusamy KA, Rahman ZA, et al. : Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul Healthc 10 : 43-48, 2015   DOI
91 Waran V, Pancharatnam D, Thambinayagam HC, Raman R, Rathinam AK, Balakrishnan YK, et al. : The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training. J Neurol Surg A Cent Eur Neurosurg 75 : 12-15, 2014
92 Romero-Garcia R, Erez Y, Oliver G, Owen M, Merali S, Poologaindran A, et al. : Practical application of networks in neurosurgery: combined 3-dimensional printing, neuronavigation, and preoperative surgical planning. World Neurosurg 137 : e126-e137, 2020   DOI
93 Okonogi S, Kondo K, Harada N, Masuda H, Nemoto M, Sugo N : Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer. Acta Neurochir (Wien) 159 : 1619-1626, 2017   DOI
94 Panesar SS, Magnetta M, Mukherjee D, Abhinav K, Branstetter BF, Gardner PA, et al. : Patient-specific 3-dimensionally printed models for neurosurgical planning and education. Neurosurg Focus 47 : E12, 2019
95 Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E : Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg 90 : 668-674, 2016   DOI
96 Ryan JR, Almefty KK, Nakaji P, Frakes DH : Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World Neurosurg 88 : 175-181, 2016   DOI
97 Bow H, Zuckerman SL, Griffith B, Lewis S, McGruder C, Pruthi S, et al. : A 3D-printed simulator and teaching module for placing S2-alar iliac screws. Oper Neurosurg (Hagerstown) 18 : 339-346, 2020   DOI
98 Clifton W, Damon A, Stein R, Pichelmann M, Nottmeier E : Biomimetic 3-dimensional-printed posterior cervical laminectomy and fusion simulation: advancements in education tools for trainee instruction. World Neurosurg 135 : 308, 2020   DOI
99 Chueh JY, Puri AS, Wakhloo AK, Gounis MJ : Risk of distal embolization with stent retriever thrombectomy and ADAPT. J Neurointerv Surg 8 : 197-202, 2016   DOI
100 Clifton W, Damon A, Soares C, Nottmeier E, Pichelmann M : Investigation of a three-dimensional printed dynamic cervical spine model for anatomy and physiology education. Clin Anat 34 : 30-39, 2021   DOI
101 Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M : Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst 34 : 749-756, 2018   DOI
102 Coelho G, Warf B, Lyra M, Zanon N : Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst 30 : 2009-2014, 2014   DOI
103 D'Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI, et al. : Cerebrovascular biomodelling: a technical note. Surg Neurol 52 : 490-500, 1999   DOI
104 Damon A, Clifton W, Valero-Moreno F, Quinones-Hinojosa A : Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: technical note. World Neurosurg 140 : 173-179, 2020   DOI
105 Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T : Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 120 : 489-492, 2014   DOI
106 Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, et al. : Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10 Suppl 4 : 576-581, 2014
107 Hsieh TY, Cervenka B, Dedhia R, Strong EB, Steele T : Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol Head Neck Surg 144 : 574-579, 2018   DOI
108 Dho YS, Lee D, Ha T, Ji SY, Kim KM, Kang H, et al. : Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery. Sci Rep 11 : 7005, 2021   DOI
109 Dholakia RJ, Kappel AD, Pagano A, Woo HH, Lieber BB, Fiorella DJ, et al. : In vitro angiographic comparison of the flow-diversion performance of five neurovascular stents. Interv Neuroradiol 24 : 150-161, 2018   DOI
110 Dong M, Chen G, Li J, Qin K, Ding X, Peng C, et al. : Three-dimensional brain arteriovenous malformation models for clinical use and resident training. Medicine (Baltimore) 97 : e9516, 2018   DOI
111 Gholampour S, Bahmani M : Hydrodynamic comparison of shunt and endoscopic third ventriculostomy in adult hydrocephalus using in vitro models and fluid-structure interaction simulation. Comput Methods Programs Biomed 204 : 106049, 2021   DOI
112 Govsa F, Karakas AB, Ozer MA, Eraslan C : Development of life-size patient-specific 3D-printed dural venous models for preoperative planning. World Neurosurg 110 : e141-e149, 2018   DOI
113 Khan IS, Kelly PD, Singer RJ : Prototyping of cerebral vasculature physical models. Surg Neurol Int 5 : 11, 2014   DOI
114 Huang X, Liu Z, Wang X, Li XD, Cheng K, Zhou Y, et al. : A small 3D-printing model of macroadenomas for endoscopic endonasal surgery. Pituitary 22 : 46-53, 2019   DOI
115 Hull CW : The birth of 3D printing. Res Technol Manag 58 : 25-30, 2015
116 Karlin L, Weinstock P, Hedequist D, Prabhu SP : The surgical treatment of spinal deformity in children with myelomeningocele: the role of personalized three-dimensional printed models. J Pediatr Orthop B 26 : 375-382, 2017   DOI
117 Kim MP, Ta AH, Ellsworth WA 4th, Marco RA, Gaur P, Miller JS : Three dimensional model for surgical planning in resection of thoracic tumors. Int J Surg Case Rep 16 : 127-129, 2015   DOI
118 Kim PS, Choi CH, Han IH, Lee JH, Choi HJ, Lee JI : Obtaining informed consent using patient specific 3D printing cerebral aneurysm model. J Korean Neurosurg Soc 62 : 398-404, 2019   DOI
119 Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, et al. : Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65 : 719-725, 2009   DOI
120 Kondo K, Nemoto M, Harada N, Masuda H, Ando S, Kubota S, et al. : Three-dimensional printed model for surgical simulation of combined transpetrosal approach. World Neurosurg 127 : e609-e616, 2019   DOI