• Title/Summary/Keyword: Three-Point Algorithm

Search Result 538, Processing Time 0.029 seconds

RCGA-Based Tuning of the 2DOF PID Controller (2자유도 PID 제어기의 RCGA기반 동조)

  • Hwang, Seung-Wook;Song, Se-Hoon;Kim, Jung-Keun;Lee, Yun-Hyung;Lee, Hyun-Shik;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.948-955
    • /
    • 2008
  • The conventional PID controller has been widely employed in industry. However, the PID controller with one degree of freedom(DOF) can not optimize both set-point tracking response and disturbance rejection response at the same time. In order to solve this problem, a few types of 2DOF PID controllers have been suggested. In this paper, a tuning formula for a 2DOF PID controller is presented. The optimal parameter sets of the 2DOF PID controller are determined based on the first-order plus time delay process and a real-coded genetic algorithm(RCGA) such that the ITAE performance criterion is minimized. The tuning rule is then addressed using calculated parameter sets and another RCGA. A set of simulation works are carried out on three processes with time delay to verify the effectiveness of the proposed rule.

Video Augmentation by Image-based Rendering

  • Seo, Yong-Duek;Kim, Seung-Jin;Sang, Hong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.147-153
    • /
    • 1998
  • This paper provides a method for video augmentation using image interpolation. In computer graphics or augmented reality, 3D information of a model object is necessary to generate 2D views of the model, which are then inserted into or overlayed on environmental views or real video frames. However, we do not require any three dimensional model but images of the model object at some locations to render views according to the motion of video camera which is calculated by an SFM algorithm using point matches under weak-perspective (scaled-orthographic) projection model. Thus, a linear view interpolation algorithm is applied rather than a 3D ray-tracing method to get a view of the model at different viewpoints from model views. In order to get novel views in a way that agrees with the camera motion the camera coordinate system is embedded into model coordinate system at initialization time on the basis of 3D information recovered from video images and model views, respectively. During the sequence, motion parameters from video frames are used to compute interpolation parameters, and rendered model views are overlayed on corresponding video frames. Experimental results for real video frames and model views are given. Finally, discussion on the limitations of the method and subjects for future research are provided.

  • PDF

Analysis of Morton Code Conversion for 32 Bit IEEE 754 Floating Point Variables (IEEE 754 부동 소수점 32비트 float 변수의 Morton Code 변환 분석)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • Morton codes play important roles in many parallel GPU applications for the nearest neighbor (NN) search in huge data and queries with its applications growing. This paper discusses and analyzes the meaning of Tero Karras's 32-bit 'unsigned int' Morton code algorithm for three-dimensional spatial information in $[0,1]^3$ and its geometric implications. Based on this, this paper proposes 64-bit 'unsigned long long' version of Morton code and compares the results in both CPU vs. GPU and 32-bit vs. 64-bit versions. The proposed GPU algorithm runs around 1000 times faster than the CPU version.

A Robust Approach to Automatic Iris Localization

  • Xu, Chengzhe;Ali, Tauseef;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.116-122
    • /
    • 2009
  • In this paper, a robust method is developed to locate the irises of both eyes. The method doesn't put any restrictions on the background. The method is based on the AdaBoost algorithm for face and eye candidate points detection. Candidate points are tuned such that two candidate points are exactly in the centers of the irises. Mean crossing function and convolution template are proposed to filter out candidate points and select the iris pair. The advantage of using this kind of hybrid method is that AdaBoost is robust to different illumination conditions and backgrounds. The tuning step improves the precision of iris localization while the convolution filter and mean crossing function reliably filter out candidate points and select the iris pair. The proposed structure is evaluated on three public databases, Bern, Yale and BioID. Extensive experimental results verified the robustness and accuracy of the proposed method. Using the Bern database, the performance of the proposed algorithm is also compared with some of the existing methods.

An Automatic Speed Control System of a Treadmill with Ultrasonic Sensors (초음파 센서를 이용한 트레드밀의 자동속도 제어시스템)

  • Auralius, Manurung;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.505-511
    • /
    • 2011
  • In this paper, we have developed an automatic velocity control system of a small-sized commercial treadmill (belt length of 1.2 m and width of 0.5 m) which is widely used at home and health centers. The control objective is to automatically adjust the treadmill velocity so that the subject's position is maintained within the track when the subject walks at a variable velocity. The subject's position with respect to a reference point is measured by a low-cost sonar sensor located on the back of the subject. Based on an encoder sensor measurement at the treadmill motor, a state feedback control algorithm with Kalman filter was implemented to determine the velocity of the treadmill. In order to reduce the unnatural inertia force felt by the subject, a predefined acceleration limit was applied, which generated smooth velocity trajectories. The experimental results demonstrate the effectiveness of the proposed method in providing successful velocity changes in response to variable velocity walking without causing significant inertia force to the subject. In the pilot study with three subjects, users could change their walking velocity easily and naturally with small deviations during slow, medium, and fast walking. The proposed automatic velocity control algorithm can potentially be applied to any locomotion interface in an economical way without having to use sophisticated and expensive sensors and larger treadmills.

Eating Activity Detection and Meal Time Estimation Using Structure Features From 6-axis Inertial Sensor (6축 관성 센서에서 구조적 특징을 이용한 식사 행동 검출 및 식사 시간 추론)

  • Kim, Jun Ho;Choi, Sun-Tak;Ha, Jeong Ho;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.8
    • /
    • pp.211-218
    • /
    • 2018
  • In this study, we propose an algorithm to detect eating activity and estimation mealtime using 6-axis inertial sensor. The eating activity is classified into three types: food picking, food eating, and lowering. The feature points of the gyro signal are selected for each gesture, and the eating activity is detected when each feature point appears in the sequence. Morphology technique is used to post-process to detect meal time. The proposed algorithm achieves the accuracy of 94.3% and accuracy of 84.1%.

Marker-less Calibration of Multiple Kinect Devices for 3D Environment Reconstruction (3차원 환경 복원을 위한 다중 키넥트의 마커리스 캘리브레이션)

  • Lee, Suwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1142-1148
    • /
    • 2019
  • Reconstruction of the three-dimensional (3D) environment is a key aspect of augmented reality and augmented virtuality, which utilize and incorporate a user's surroundings. Such reconstruction can be easily realized by employing a Kinect device. However, multiple Kinect devices are required for enhancing the reconstruction density and for spatial expansion. While employing multiple Kinect devices, they must be calibrated with respect to each other in advance, and a marker is often used for this purpose. However, a marker needs to be placed at each calibration, and the result of marker detection significantly affects the calibration accuracy. Therefore, a user-friendly, efficient, accurate, and marker-less method for calibrating multiple Kinect devices is proposed in this study. The proposed method includes a joint tracking algorithm for approximate calibration, and the obtained result is further refined by applying the iterative closest point algorithm. Experimental results indicate that the proposed method is a convenient alternative to conventional marker-based methods for calibrating multiple Kinect devices. Hence, the proposed method can be incorporated in various applications of augmented reality and augmented virtuality that require 3D environment reconstruction by employing multiple Kinect devices.

PID Control of a flexible robot rotating in vertical plane (수직면에서 회전운동을 하는 탄성로봇의 PID 제어)

  • Kang, Junwon;Oh, Chaeyoun;Kim, Kiho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF

New Fast Block-Matching Motion Estimation using Temporal and Spatial Correlation of Motion Vectors (움직임 벡터의 시공간 상관성을 이용한 새로운 고속 블럭 정합 움직임 추정 방식)

  • 남재열;서재수;곽진석;이명호;송근원
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.247-259
    • /
    • 2000
  • This paper introduces a new technique that reduces the search times and Improves the accuracy of motion estimation using high temporal and spatial correlation of motion vector. Instead of using the fixed first search Point of previously proposed search algorithms, the proposed method finds more accurate first search point as to compensating searching area using high temporal and spatial correlation of motion vector. Therefore, the main idea of proposed method is to find first search point to improve the performance of motion estimation and reduce the search times. The proposed method utilizes the direction of the same coordinate block of the previous frame compared with a block of the current frame to use temporal correlation and the direction of the adjacent blocks of the current frame to use spatial correlation. Based on these directions, we compute the first search point. We search the motion vector in the middle of computed first search point with two fixed search patterns. Using that idea, an efficient adaptive predicted direction search algorithm (APDSA) for block matching motion estimation is proposed. In the experimental results show that the PSNR values are improved up to the 3.6dB as depend on the Image sequences and advanced about 1.7dB on an average. The results of the comparison show that the performance of the proposed APDSA algorithm is better than those of other fast search algorithms whether the image sequence contains fast or slow motion, and is similar to the performance of the FS (Full Search) algorithm. Simulation results also show that the performance of the APDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS algorithm.

  • PDF

An Effective Algorithm for Subdimensional Clustering of High Dimensional Data (고차원 데이터를 부분차원 클러스터링하는 효과적인 알고리즘)

  • Park, Jong-Soo;Kim, Do-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.417-426
    • /
    • 2003
  • The problem of finding clusters in high dimensional data is well known in the field of data mining for its importance, because cluster analysis has been widely used in numerous applications, including pattern recognition, data analysis, and market analysis. Recently, a new framework, projected clustering, to solve the problem was suggested, which first select subdimensions of each candidate cluster and then each input point is assigned to the nearest cluster according to a distance function based on the chosen subdimensions of the clusters. We propose a new algorithm for subdimensional clustering of high dimensional data, each of the three major steps of which partitions the input points into several candidate clutters with proper numbers of points, filters the clusters that can not be useful in the next steps, and then merges the remaining clusters into the predefined number of clusters using a closeness function, respectively. The result of extensive experiments shows that the proposed algorithm exhibits better performance than the other existent clustering algorithms.