• Title/Summary/Keyword: Three-Point Algorithm

Search Result 538, Processing Time 0.032 seconds

Development of Volleyball Match Analysis Program through Polygon Clipping Algorithm (다각형 클리핑 알고리즘(Polygon Clipping Algorithm)을 이용한 배구경기 분석 프로그램 개발)

  • Hong, Seong-Jin;Lee, Ki-Chung
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2013
  • The current study developed the analysis program by employing the Polygon Clipping Algorithm to calculate the open area on the court when players try to spike a ball. The program consists of two kinds of output screen. First, on the main output screen, it is possible to calculate both blocked area by net and blockers, and opened area to avoid the blocked area when players spike the ball. Additionally, the secondary output screen shows the moving path of setter and the location of set. Main output screen indicates hitting points of spiking, blocking, and open area. Also, it is possible to analyze the movement of setter, location of set, and hitting point of attacker. The program was tested by comparing real coordinate value and location coordinate value which is operated on the program. To apply this program in the field, future study needs to develop the program that can calculate three dimensions coordinate fast by tracking the location of players or ball in real time.

AVM Stop-line Detection based Longitudinal Position Correction Algorithm for Automated Driving on Urban Roads (AVM 정지선인지기반 도심환경 종방향 측위보정 알고리즘)

  • Kim, Jongho;Lee, Hyunsung;Yoo, Jinsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2020
  • This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.

Multi-cell Segmentation of Glioblastoma Combining Marker-based Watershed and Elliptic Fitting Method in Fluorescence Microscope Image (마커 제어 워터셰드와 타원 적합기법을 결합한 다중 교모세포종 분할)

  • Lee, Jiyoung;Jeong, Daeun;Lee, Hyunwoo;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.159-166
    • /
    • 2021
  • In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.

A Design of 256-bit Modular Multiplier using 3-way Toom-Cook Multiplication Algorithm and Fast Reduction Algorithm (3-way Toom-Cook 곱셈 알고리듬과 고속 축약 알고리듬을 이용한 256-비트 모듈러 곱셈기 설계)

  • Yang, Hyeon-Jun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.223-225
    • /
    • 2021
  • Modular multiplication is a key operation for point scalar multiplication of ECC, and is the most important factor affecting the performance of ECC processor. This paper describes a design of a 256-bit modular multiplier that adopts 3-way Toom-Cook multiplication algorithm and modified fast reduction algorithm. One 90-bit multiplier and three 264-bit adders were used to optimize the hardware size and the number of clock cycles required. The modular multiplier was verified by implementing it using Zynq UltraScale+ MPSoC device and the modular multiplication operation takes 15 clock cycles.

  • PDF

Practical Issues of Mobile Haptic Interface and Their Improvements (이동형 햅틱 장치의 실제적 문제점과 그 향상 방안)

  • Lee, In;Hwang, In-Wook;Han, Kyung-Lyoung;Choi, Oh-Kyu;Lee, Jin S.;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.390-395
    • /
    • 2009
  • In this paper, we present practical issues in a Mobile Haptic Interface (MHI) and their improvements. The improvements can be categorized in three parts: 1) high-accuracy estimation of the world position of the haptic interface point, 2) motion planning algorithm to move the mobile base while avoiding collisions with the user and other objects, and 3) closed-loop force control to compensate the undesired effect of mobile base dynamics on the final rendering force perceived by the user.

  • PDF

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

A Study on the Adaptive PD Controller for robot manipulator with Elastic Joints (유연성 관절 로보트 매니퓰레이터에 대한 적응 PD 제어기에 관한 연구)

  • Kang, Ji-Won;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.394-396
    • /
    • 1992
  • This note is concerned with the point to point control of manipulators having elastic joints. We present a PD control algorithm which is adaptive with respect to the gravity and elastic parameters of robot manipulators. While the conventional control law is used, a new adaptive law is used to improve the performance. The proposed controller is shown to be stable. It is Shown that steady-state position error converges to zero through some simulations concerning the manipulator with three revolute elastic joints.

  • PDF

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • Cho, Inhaeng;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF